- Код статьи
- S3034530825040147-1
- DOI
- 10.7868/S3034530825040147
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том / Номер выпуска 4
- Страницы
- 170-180
- Аннотация
- Разработка новых функционализированных органических соединений, способных эффективно координировать ионы металлов, остается актуальной задачей при создании химических сенсоров для мониторинга состояния окружающей среды. В данной работе продемонстрировано значительное снижение предела обнаружения ионов Cd за счет использования производного 6-формильзамещенного спироиндолинбензопирана, содержащего бензоксазольный фрагмент в положении 8´ бензопиранового кольца. Введение молекул спиропирана в матрицу на основе силоксан-акрилатного латекса и их ассоциация с тетрафенилборат-ионом, выполняющим роль спейсера и препятствующим π-стэкингу и самотушению люминесценции, позволили значительно повысить чувствительность сенсорного материала. Использование прозрачных, ионопроницаемых латексных пленок, модифицированных комплексами СП-ТФБ, обеспечило снижение предела обнаружения Cd на пять порядков – до 1,66 нМ.
- Ключевые слова
- спиротиран хемосенсоры кадмий люминесцентные материалы селективное детектирование
- Дата публикации
- 21.08.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 67
Библиография
- 1. Minkin V.I. Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds // Chem Rev. Vol. 104, No. 5. P. 2751–2776.
- 2. Minkin V.I., Starikov A.G., Starikova A.A. Light-controlled spin-state-switching rearrangements of transition metal complexes with photochromic ligands // Pure and Applied Chemistry. 2017. Vol. 89, No. 8. P. 985–1005.
- 3. Aldoshin S.M., Sanina N.A. Photochromic magnetic materials based on transition metal oxalate complexes // Russian Chemical Reviews. 2016. Vol. 85, No. 11. P. 1185–1197.
- 4. Chen J.R. et al. Synthesis and characterization of coumarin-based spiropyran photochromic colorants // Org. Lett. 2008. Vol. 10, No. 21. P. 4823–4826.
- 5. Paramonov S.V., Lokshin V., Fedorova O.A. Spiropyran, chromene or spirooxazine ligands: Insights into mutual relations between complexing and photochromic properties // Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2011. Vol. 12, No. 3. P. 209–236.
- 6. Zakharova M.I. et al. Quantitative investigations of cation complexation of photochromic 8-benzothiazole-substituted benzopyran: towards metal-ion sensors // Photochemical, Photobiological Sciences. 2010. Vol. 9, No. 2. P. 199–207.
- 7. Tomasulo M. et al. Photoswitchable fl uorescent assemblies based on hydrophilic BODIPY-spiropyran conjugates // Journal of Physical Chemistry C. 2008. Vol. 112, No. 21. P. 8038–8045.
- 8. Seefeldt B. et al. Spiropyrans as molecular optical switches // Photochemical and Photobiological Sciences. 2010. Vol. 9, No. 2. P. 213–220.
- 9. Solovyova E.V. et al. Synthesis and complex formation of spirobenzopyranindolines containing rhodamine fragment // Russ. J. Gen. Chem. 2017. Vol. 87, No. 5. P. 1007–1014.
- 10. Felicio L.G.B. et al. Water soluble spiropyran for Hg2+ sensing in water // J. Mol. Struct. 2024. Vol. 1298. P. 136963.
- 11. Khunkhong N. et al. A novel spirooxazine derivative as a colorimetric probe for Fe2+ and Pb2+ determination on microfluidic paper-based analytical device (μPAD) for maintaining in photochromic efficiency // Dyes and Pigments. 2023. Vol. 208. P. 110869.
- 12. Chernyshev A.V. et al. Polychromogenic molecular systems based on photoand ionochromic spiropyrans // Dyes and Pigments. 2018. Vol. 158. P. 506–516.
- 13. Voloshin N.A. et al. Spiropyrans and spirooxazines 5. Synthesis of photochromic 8-(4,5-diphenyl1,3-oxazol-2-y1)-substituted spiro[indoline-benzopyrans] // Russian Chemical Bulletin. 2009. Vol. 58, No. 1. P. 156–161.
- 14. Voloshin N.A. et al. Photoand thermochromic spirans 40. Spiropyrans based on 5-benzoxazolyl4-hydroxyisophthalic aldehyde // Chem. Heterocycl. Compd. 2014. Vol. 49, No. 12. P. 1815–1820.
- 15. Alhashimy N. et al. Novel synthesis and characterisation of 3,3-dimethyl-5′-(2-benzothiazolyl)spironaphth(indoline-2,3′-[3H]naphth[2,1-b] [1,4]oxazine) derivatives // Tetrahedron Lett. 2009. Vol. 50, No. 21. P. 2573–2576.
- 16. Zakharova M.I. et al. Kinetic modelling of the photochromism and metal complexation of a spiropyran dye: Application to the Co(II) – Spiroindoline-diphenyloxazolebenzopyran system // Dyes and Pigments. 2011. Vol. 89, No. 3. P. 324–329.
- 17. Panda S.K. et al. An efficient PET-based probe for detection and discrimination of Zn2+ and Cd2+ in near-aqueous media and live-cell imaging // J. Photochem. Photobiol. A Chem. 2022. Vol. 427. P. 113816.
- 18. Algethami J.S. et al. Recent Advancements in Fluorometric and Colorimetric Detection of Cd2+ Using Organic Chemosensors: A Review (2019–2024) // Crit. Rev. Anal. Chem. 2024. Apr. 24. P. 1–20. DOI: 10.1080/10408347.2024.2339968.
- 19. Mironenko A.Yu. et al. FRET pumping of rhodamine-based probe in light-harvesting nanoparticles for highly sensitive detection of Cu2+ // Anal. Chim. Acta. 2022. Vol. 1229. P. 340388.
- 20. Aparin I.O., Melnychuk N., Klymchenko A.S. Ionic Aggregation-Induced Emission: Bulky Hydrophobic Counterions Light Up Dyes in Polymeric Nanoparticles // Adv. Opt. Mater. 2020. Vol. 8, No. 14. P. 2000027.
- 21. Shulov I. et al. Fluorinated counterion-enhanced emission of rhodamine aggregates: Ultrabright nanoparticles for bioimaging and light-harvesting // Nanoscale. 2015. Vol. 7, No. 43. P. 18198–18210.
- 22. Andreiuk B. et al. Bulky Barbiturates as Non-Toxic Ionic Dye Insulators for Enhanced Emission in Polymeric Nanoparticles // Chemistry. 2021. Vol. 27, No. 50. P. 12877–12883.
- 23. Chepak A. et al. Light Harvesting Nanoprobe for Trace Detection of Hg2+ in Water // Molecules. 2023. Vol. 28, No. 4. P. 1633.
- 24. Pham T.C., Kim Y.K., Park J.B., Jeon S., Ahn J., Yim Y.Y., Juyoung L.S., A Selective Colorimetric and Fluorometric Chemosensor Based on Conjugated Polydiacetylenes for Cadmium Ion Detection // ChemPhotoChem. 2019. Vol. 3, No. 11. P. 1133–1137. https://doi.org/10.1002/cptc.201900165.
- 25. Wang P., Duan L., Liao Y. A retrievable and highly selective peptide-based fluorescent probe for detection of Cd2+ and Cys in aqueous solutions and live cells // Microchem. J. 2019. Vol. 146. P. 818–827. https://doi.org/10.1016/j.microc.2019.02.004
- 26. Krishnaveni K., Murugesan S., Siva A. Fluorimetric and colorimetric detection of multianalytes Zn2+/Cd2+/F− ions via 5-bromosalicyl hydrazone appended pyrazole receptor; live cell imaging analysis in HeLa cells and zebra fish embryos // Inorg. Chem. Commun. 2021. Vol. 132. 108843. https://doi.org/10.1016/j. inoche.2021.108843
- 27. Mohanasundaram D., Bhaskar R.G.V., Kumar G., Rajesh J., Rajagopal G. // A quinoline based Schiff base as a turn-on fluorescence chemosensor for selective and robust delection of Cd2+ ion in semi-aqueous medium // Microchem. J. 2021. Vol. 164. 106030. https://doi.org/10.1016/j.microc.2021.106030
- 28. Zhang Y.-P., Niu, W.-Y., Ma Ch.-M., Yang Y.-Sh., Guo H.-Ch., Xue J.-J., Fluorogenic recognition of Zn2+, Cd2+ by a new Pyrazoline-based Multi-Analyte chemosensor and its application in live cell imaging // Inorg. Chem. Commun. 2021. Vol. 130. 108735. https://doi.org/10.1016/j.inoche.2021.108735
- 29. Behura R., Mohanty P., Sahu G., Dash P.P., Behera S., Dinda R., Hota P.R., Sahoo H., Bhaskaran R., Barick A.K., Mohapatra P., Jali B.R. A highly selective Schiff base fluorescent sensor for Zn2+, Cd2+ and Hg2+ based on 2,4-dinitrophenylhydrazine derivative // Inorg. Chem. Commun. 2023. Vol. 154. 110959. https:// doi.org/10.1016/j.inoche.2023.110959
- 30. Tian G., Han Y.-Z., Yang Q. 1, 10-phenanthroline derivative as colorimetric and ratiometric fluorescence probe for Zn2+ and Cd2+ // Results Chem. 2023. Vol. 5. 100899. https://doi.org/10.1016/j. rechem.2023.100899