RAS PresidiumВестник Дальневосточного отделения Российской академии наук Vestnik of the Far East Branch of the Russian Academy of Sciences

  • ISSN (Print) 0869-7698
  • ISSN (Online) 3034-5308

Lowering the detection limit of Cd using functionalized associates of spiro[indoline-benzopyran] with tetraphenylborate ion

PII
S3034530825040147-1
DOI
10.7868/S3034530825040147
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
170-180
Abstract
The development of new functionalized organic compounds capable of efficiently coordinating metal ions remains a pressing challenge in the design of chemical sensors for environmental monitoring. In this work, a significant reduction in the detection limit of Cd ions was achieved by using a 6-formyl-substituted spiro[indoline-benzopyran] derivative containing a benzoxazole fragment at the 8’ position of the benzopyran moiety. Incorporation of spiropyran molecules into a siloxane-acrylate latex matrix and their association with a tetraphenylborate ion, acting as a spacer to prevent π-stacking and self-quenching of luminescence, led to a notable enhancement in sensor sensitivity. The use of transparent, ion-permeable latex films modified with SP-TFB complexes enabled a five orders of magnitude decrease in the detection limit of Cd, reaching 1.66 nM.
Keywords
спиротиран хемосенсоры кадмий люминесцентные материалы селективное детектирование
Date of publication
21.08.2025
Year of publication
2025
Number of purchasers
0
Views
68

References

  1. 1. Minkin V.I. Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds // Chem Rev. Vol. 104, No. 5. P. 2751–2776.
  2. 2. Minkin V.I., Starikov A.G., Starikova A.A. Light-controlled spin-state-switching rearrangements of transition metal complexes with photochromic ligands // Pure and Applied Chemistry. 2017. Vol. 89, No. 8. P. 985–1005.
  3. 3. Aldoshin S.M., Sanina N.A. Photochromic magnetic materials based on transition metal oxalate complexes // Russian Chemical Reviews. 2016. Vol. 85, No. 11. P. 1185–1197.
  4. 4. Chen J.R. et al. Synthesis and characterization of coumarin-based spiropyran photochromic colorants // Org. Lett. 2008. Vol. 10, No. 21. P. 4823–4826.
  5. 5. Paramonov S.V., Lokshin V., Fedorova O.A. Spiropyran, chromene or spirooxazine ligands: Insights into mutual relations between complexing and photochromic properties // Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2011. Vol. 12, No. 3. P. 209–236.
  6. 6. Zakharova M.I. et al. Quantitative investigations of cation complexation of photochromic 8-benzothiazole-substituted benzopyran: towards metal-ion sensors // Photochemical, Photobiological Sciences. 2010. Vol. 9, No. 2. P. 199–207.
  7. 7. Tomasulo M. et al. Photoswitchable fl uorescent assemblies based on hydrophilic BODIPY-spiropyran conjugates // Journal of Physical Chemistry C. 2008. Vol. 112, No. 21. P. 8038–8045.
  8. 8. Seefeldt B. et al. Spiropyrans as molecular optical switches // Photochemical and Photobiological Sciences. 2010. Vol. 9, No. 2. P. 213–220.
  9. 9. Solovyova E.V. et al. Synthesis and complex formation of spirobenzopyranindolines containing rhodamine fragment // Russ. J. Gen. Chem. 2017. Vol. 87, No. 5. P. 1007–1014.
  10. 10. Felicio L.G.B. et al. Water soluble spiropyran for Hg2+ sensing in water // J. Mol. Struct. 2024. Vol. 1298. P. 136963.
  11. 11. Khunkhong N. et al. A novel spirooxazine derivative as a colorimetric probe for Fe2+ and Pb2+ determination on microfluidic paper-based analytical device (μPAD) for maintaining in photochromic efficiency // Dyes and Pigments. 2023. Vol. 208. P. 110869.
  12. 12. Chernyshev A.V. et al. Polychromogenic molecular systems based on photoand ionochromic spiropyrans // Dyes and Pigments. 2018. Vol. 158. P. 506–516.
  13. 13. Voloshin N.A. et al. Spiropyrans and spirooxazines 5. Synthesis of photochromic 8-(4,5-diphenyl1,3-oxazol-2-y1)-substituted spiro[indoline-benzopyrans] // Russian Chemical Bulletin. 2009. Vol. 58, No. 1. P. 156–161.
  14. 14. Voloshin N.A. et al. Photoand thermochromic spirans 40. Spiropyrans based on 5-benzoxazolyl4-hydroxyisophthalic aldehyde // Chem. Heterocycl. Compd. 2014. Vol. 49, No. 12. P. 1815–1820.
  15. 15. Alhashimy N. et al. Novel synthesis and characterisation of 3,3-dimethyl-5′-(2-benzothiazolyl)spironaphth(indoline-2,3′-[3H]naphth[2,1-b] [1,4]oxazine) derivatives // Tetrahedron Lett. 2009. Vol. 50, No. 21. P. 2573–2576.
  16. 16. Zakharova M.I. et al. Kinetic modelling of the photochromism and metal complexation of a spiropyran dye: Application to the Co(II) – Spiroindoline-diphenyloxazolebenzopyran system // Dyes and Pigments. 2011. Vol. 89, No. 3. P. 324–329.
  17. 17. Panda S.K. et al. An efficient PET-based probe for detection and discrimination of Zn2+ and Cd2+ in near-aqueous media and live-cell imaging // J. Photochem. Photobiol. A Chem. 2022. Vol. 427. P. 113816.
  18. 18. Algethami J.S. et al. Recent Advancements in Fluorometric and Colorimetric Detection of Cd2+ Using Organic Chemosensors: A Review (2019–2024) // Crit. Rev. Anal. Chem. 2024. Apr. 24. P. 1–20. DOI: 10.1080/10408347.2024.2339968.
  19. 19. Mironenko A.Yu. et al. FRET pumping of rhodamine-based probe in light-harvesting nanoparticles for highly sensitive detection of Cu2+ // Anal. Chim. Acta. 2022. Vol. 1229. P. 340388.
  20. 20. Aparin I.O., Melnychuk N., Klymchenko A.S. Ionic Aggregation-Induced Emission: Bulky Hydrophobic Counterions Light Up Dyes in Polymeric Nanoparticles // Adv. Opt. Mater. 2020. Vol. 8, No. 14. P. 2000027.
  21. 21. Shulov I. et al. Fluorinated counterion-enhanced emission of rhodamine aggregates: Ultrabright nanoparticles for bioimaging and light-harvesting // Nanoscale. 2015. Vol. 7, No. 43. P. 18198–18210.
  22. 22. Andreiuk B. et al. Bulky Barbiturates as Non-Toxic Ionic Dye Insulators for Enhanced Emission in Polymeric Nanoparticles // Chemistry. 2021. Vol. 27, No. 50. P. 12877–12883.
  23. 23. Chepak A. et al. Light Harvesting Nanoprobe for Trace Detection of Hg2+ in Water // Molecules. 2023. Vol. 28, No. 4. P. 1633.
  24. 24. Pham T.C., Kim Y.K., Park J.B., Jeon S., Ahn J., Yim Y.Y., Juyoung L.S., A Selective Colorimetric and Fluorometric Chemosensor Based on Conjugated Polydiacetylenes for Cadmium Ion Detection // ChemPhotoChem. 2019. Vol. 3, No. 11. P. 1133–1137. https://doi.org/10.1002/cptc.201900165.
  25. 25. Wang P., Duan L., Liao Y. A retrievable and highly selective peptide-based fluorescent probe for detection of Cd2+ and Cys in aqueous solutions and live cells // Microchem. J. 2019. Vol. 146. P. 818–827. https://doi.org/10.1016/j.microc.2019.02.004
  26. 26. Krishnaveni K., Murugesan S., Siva A. Fluorimetric and colorimetric detection of multianalytes Zn2+/Cd2+/F− ions via 5-bromosalicyl hydrazone appended pyrazole receptor; live cell imaging analysis in HeLa cells and zebra fish embryos // Inorg. Chem. Commun. 2021. Vol. 132. 108843. https://doi.org/10.1016/j. inoche.2021.108843
  27. 27. Mohanasundaram D., Bhaskar R.G.V., Kumar G., Rajesh J., Rajagopal G. // A quinoline based Schiff base as a turn-on fluorescence chemosensor for selective and robust delection of Cd2+ ion in semi-aqueous medium // Microchem. J. 2021. Vol. 164. 106030. https://doi.org/10.1016/j.microc.2021.106030
  28. 28. Zhang Y.-P., Niu, W.-Y., Ma Ch.-M., Yang Y.-Sh., Guo H.-Ch., Xue J.-J., Fluorogenic recognition of Zn2+, Cd2+ by a new Pyrazoline-based Multi-Analyte chemosensor and its application in live cell imaging // Inorg. Chem. Commun. 2021. Vol. 130. 108735. https://doi.org/10.1016/j.inoche.2021.108735
  29. 29. Behura R., Mohanty P., Sahu G., Dash P.P., Behera S., Dinda R., Hota P.R., Sahoo H., Bhaskaran R., Barick A.K., Mohapatra P., Jali B.R. A highly selective Schiff base fluorescent sensor for Zn2+, Cd2+ and Hg2+ based on 2,4-dinitrophenylhydrazine derivative // Inorg. Chem. Commun. 2023. Vol. 154. 110959. https:// doi.org/10.1016/j.inoche.2023.110959
  30. 30. Tian G., Han Y.-Z., Yang Q. 1, 10-phenanthroline derivative as colorimetric and ratiometric fluorescence probe for Zn2+ and Cd2+ // Results Chem. 2023. Vol. 5. 100899. https://doi.org/10.1016/j. rechem.2023.100899
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library