RAS PresidiumВестник Дальневосточного отделения Российской академии наук Vestnik of the Far East Branch of the Russian Academy of Sciences

  • ISSN (Print) 0869-7698
  • ISSN (Online) 3034-5308

Analysis of mountain waves’ characteristics obtained by high-resolution numerical modeling on Eastern Siberia and Russian Far East

PII
S30345308S0869769825030028-1
DOI
10.7868/S3034530825030028
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
16-28
Abstract
Forecasting of possible locations, intensity, vertical and horizontal propagation of mountain waves (MW) is one of the main problems to ensure flight safety. This is very important in the complete absence predictions’ methods on the territory of Russia in generally and, especially, in Far-Eastern region. Main problem of the MW forecasting is almost complete absence of MW observations and instrumental measurement of their characteristics. In the article, approach to conformity assessment of simulated MW parameters (location, intensity, vertical and horizontal propagation) to real characteristics which are approximately determined by satellite images of lenticular clouds (Sc и Ac lenticularis) and atmospheric sounding is presented. It is shown that characteristics of simulated MW by the Weather Research and Forecasting model with grid spacing of 1 km are close to actual values. Possibilities to calibrate parameters of simulated MW calculated on the 5-km grid by values obtained on 1-km grid are discussed.
Keywords
горные волны подветренные волны метеорологические прогнозы для авиации Дальний Восток
Date of publication
02.06.2025
Year of publication
2025
Number of purchasers
0
Views
80

References

  1. 1. Sharman R.D., Lane T. (Eds.). Aviation turbulence: processes, detection, prediction. Springer International Publishing, 2016. DOI: 10.1007/978-3-319-23630-8.
  2. 2. Barry R.G. Mountain weather and climate. Cambridge: Cambridge University Press, 2008. DOI: 10.1017/CBO9780511754753.
  3. 3. Винниченко Н.К., Пинус Н.З., Шметер С.М., Шур Г.Н. Турбулентность в свободной атмосфере. Л.: Гидрометеоиздат, 1976. 288 с.
  4. 4. Романский С.О., Вербицкая Е.М. Сильные шквалистые ветры в Южно-Сахалинске летом 2014 г. // Геосферные исследования. 2023. № 4. С. 141–154. EDN: LZBUBM.
  5. 5. Вербицкая Е.М., Крохин В.В., Романский С.О. Прогноз опасных для авиации явлений погоды на территории Восточной Сибири и Дальнего Востока России // Труды ДВНИГМИ. 2024. Вып. 157. С. 18–40.
  6. 6. Galway J.G. The lifted index as a predictor of latent instability // Bulletin of the American Meteorological Society. 1956. Vol. 37. P. 528–529. DOI: 10.1175/1520-0477-37.10.528.
  7. 7. Skamarock W.C., Klemp J.B. A time-split non-hydrostatic atmospheric model for research and NWP applications // Journal of Computational Physics. 2007. Vol. 227 (7). P. 3465–3485. DOI: 10.1016/j.jcp.2007.01.037.
  8. 8. Fritts D.C., Lund A.C., Lund T.S., Yudin V. Impacts of limited model resolution on the representation of mountain wave and secondary gravity wave dynamics in local and global models. 1: Mountain waves in the stratosphere and mesosphere // Journal of Geophysical Research: Atmospheres. 2022. Vol. 127. e2021JD035990. DOI: 10.1029/2021JD035990.
  9. 9. Fritts D.C., Lund A.C., Lund T.S., Yudin V. Impacts of limited model resolution on the representation of mountain wave and secondary wave dynamics in local and global models. 2: Mountain wave and secondary wave evolutions in the thermosphere // Journal of Geophysical Research: Atmospheres. 2022. Vol. 127. e2021JD036035. DOI: 10.1029/2021JD036035.
  10. 10. Feltz W.F., Bedka K.M., Otkin J.A., Greenwald T., Ackerman S.A. Understanding satellite-observed mountain-wave signatures using high-resolution numerical model data // Weather and Forecasting. 2009. Vol. 24. P. 76–86. DOI: 10.1175/2008WAF2222127.1.
  11. 11. Wilms H., Bramberger M., Dörnbrack A. Observation and simulation of mountain wave turbulence above Iceland: turbulence intensification due to wave interference // Quarterly Journal of the Royal Meteorological Society. 2020. Vol. 146. P. 3326–3346. DOI: 10.1002/qj.3848.
  12. 12. Xia G., Draxl C., Raghavendra A., Lundquist J.K. Validating simulated mountain wave impacts on hub-height wind speed using SoDAR observations // Renewable Energy. 2021. Vol. 163. P. 2220–2230. DOI: 10.1016/j.renene.2020.10.127.
  13. 13. Eckermann S.D., Lindeman J., Broutman D., Ma J., Boybeyi Z. Momentum fluxes of gravity waves generated by variable Froude number flow over three-dimensional obstacles // Journal of Atmospheric Sciences. 2010. Vol. 67. P. 2260–2278. DOI: 10.1175/2010jas3375.1.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library