RAS PresidiumВестник Дальневосточного отделения Российской академии наук Vestnik of the Far East Branch of the Russian Academy of Sciences

  • ISSN (Print) 0869-7698
  • ISSN (Online) 3034-5308

Spring freshet fluxes of terrigenous matter from Amur River to the estuary in surrounding Okhotsk and Japan Seas

PII
S30345308S0869769825020051-1
DOI
10.7868/S3034530825020051
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
57-75
Abstract
The objective of this work is to study the interannual variability of lithodynamic and biogeochemical characteristics of suspended matter (SPM) along the 884 km transect "lower reaches- estuary of the Amur River in the Sea of Okhotsk and the Sea of Japan". Observations were carried out in mid-June 2005 and 2006. The spring flood during the study periods differed dramatically in water content and conditions for mobilization of terrigenous material in the catchment area. Thus, the phases of the culmination of the highest flood level (2005) and the culmination of the lowest low-water level of the Amur were covered. The distribution of SPM, suspended organic carbon (POC), total nitrogen (TN), carbon isotopes (S13C) and nitrogen (815N) were studied. We did not find any sharp fluctuations in the SPM content in the lower reaches of the Amur in 2005 and 2006. However, they manifested themselves in the marine segments of the transect - in the Amur Estuary, in the Sea of Okhotsk and Sea of Japan segments of the estuary. The primary cause of the changes were the physicochemical transformations of SPM against the background of increasing salinity and wave remobilization of bottom sediments. The latter was most clearly manifested in 2006, when the water level in the river segment of the estuary and in the Amur Estuary was low.
Keywords
река Амур эстуарий взвешенный материал взвешенный органический углерод изотопы углерода и азота
Date of publication
01.04.2025
Year of publication
2025
Number of purchasers
0
Views
83

References

  1. 1. Добровольский С.Г. Глобальные изменения речного стока. М.: ГЕОС, 2011. 660 с.
  2. 2. Yasuda T., Asahara Y., Ichikawa R. et al. Distribution and transport processes of lithogenic material from the Amur River revealed by the Sr and Nd isotope ratios of sediments from the Sea of Okhotsk // Progress in Oceanography. 2014. Vol. 126. P. 155-167.
  3. 3. Seki O., Mikami Y., Nagao S. et al. Lignin phenols and BIT index distributions in the Amur River and the Sea of Okhotsk: Implications for the source and transport of particulate terrestrial organic matter to the ocean // Progress in Oceanography. 2014. Vol. 126. P. 146-154.
  4. 4. Шамов В.В., Гарцман Б.И., Губарева Т.С., Макагонова М.А. Исследования гидрологических последствий современных изменений климата в Дальневосточном регионе России // Вестник ДВО РАН. 2014. № 2. С. 15-23.
  5. 5. Tachibana Y., Oshima K., Ogi M. Seasonal and interannual variations of Amur River discharge and their relationships to large-scale atmospheric patterns and moisture fluxes // J. Geophys. Res. 2008. Vol. 113. D16102.
  6. 6. Гельфан А.Н., Калугин А.С., Мотовилов Ю.Г. Оценка изменений водного режима реки Амур в ХХI веке при двух способах задания климатических проекций в модели формирования речного стока // Водные ресурсы. 2018. Т. 45, № 3. С. 223-234.
  7. 7. Калугин А.С. Модель формирования стока реки Амур и ее применение для оценки возможных изменений водного режима / автореф. дис. … канд. геогр. наук. М., 2016. 24 с.
  8. 8. Holmes R.M., McClelland J.W., Petersonet B.J. et al. Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas // Estuaries Coasts. 2012. Vol. 35. P. 369-382.
  9. 9. Frey K.E., McClelland J.W. Impacts of permafrost degradation on arctic river biogeochemistry // Hydrol. Process. 2009. Vol. 23. P. 169-182.
  10. 10. Holmes R.M., McClelland J.W., Raymond P.A. et al. Lability of DOC transported by Alaskan rivers to the Arctic Ocean // Geophys. Res. Lett. 2008. Vol. 35. L03402.
  11. 11. Дударев О.В., Семилетов И.П., Чаркин А.Н. Масштабы изменчивости состава взвеси в системе река Лена - море Лаптевых // Докл. Акад. наук. 2006. Т. 411, № 4. С. 527-534.
  12. 12. Dudarev O., Charkin A., Shakhova N. et al. East Siberian Sea: interannual heterogenety of the suspended particulate matter and its biogeochemical signature // Progress in Oceanography. 2022. Vol. 208. 102903.
  13. 13. Gordeev V.V., Pokrovsky O.S., Zhulidov A.V. et al. Dissolved Major and Trace Elements in the Largest Eurasian Arctic Rivers: Ob, Yenisey, Lena, and Kolyma // Water. 2024. Vol. 16. 316.
  14. 14. Калугин А.С., Мотовилов Ю.Г. Модель формирования стока для бассейна реки Амур // Водные ресурсы. 2018. T. 45, № 2. C. 121-132.
  15. 15. Махинов А.Н., Лю Ш., Ким В.И., Махинова А.Ф. Особенности больших наводнений на реке Амур в период высокой водности 2009-2021 гг. // Тихоокеанская география. 2023. № 1. С. 66-74.
  16. 16. Левшина С.И. Органическое вещество поверхностных вод бассейна Среднего и Нижнего Амура. Владивосток: Дальнаука, 2010. 145 с.
  17. 17. Guo L., Semiletov I., Gustafsson O. et al. Characterization of Siberian Arctic coastal sediments: implications for terrestrial organic carbon export // Global Biogeochem. Cycles. 2004. Vol. 18. GB1036.
  18. 18. Vonk J.E., Sánchez-García L., Semiletov I. et al. Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, East Siberian Sea // Biogeosciences. 2010. Vol. 7. P. 3153-3166.
  19. 19. Упоров Г.А. Особенности экстремального наводнения в бассейне Амура летом 2013 года // Вестник ДВО РАН. 2014. № 5. С. 58-64.
  20. 20. Жабин И.A., Абросимова A.A., Дубина В.A., Некрасов Д.A. Влияние стока р. Амур на гидрологические условия Амурского лимана и Сахалинского залива Охотского моря в период весенне-летнего паводка // Метеорология и гидрология. 2010. № 4. С. 93-100.
  21. 21. Finlay J.C., Kendall C. Stable Isotope Tracing of Temporal and Spatial Variability in Organic Matter Sources to Freshwater Ecosystems. In: Stable Isotopes in Ecology and Environmental Science. Oxford, U.K.: Blackwell, 2008. P. 283-333. DOI: 10.1002/9780470691854.ch10.
  22. 22. Carreira R.S., Wagener A.L.R., Readman J.W. et al. Changes in the sedimentary organic carbon pool of a fertilized tropical estuary, Guanabara Bay, Brazil: an elemental, isotopic and molecular marker approach // Mar. Chem. 2002. Vol. 79. P. 207-227.
  23. 23. Galimov E.M. Biological Fractionation of Isotopes. N.Y.; Toronto; London: Academic Press, 1985.
  24. 24. Walsh J.J., McRoy C.P., Coachman L.K. et al. Carbon and nitrogen cycling within the Bering/Chukchi Seas: source regions for organic matter effecting AOU demands of the Arctic Ocean // Prog. Oceanog. 1989. Vol. 22. P. 277-359.
  25. 25. Gorbatenko K.M., Lazhentsev A.E., Kiyashko S.I. Seasonal dynamics of the trophic status of zooplankton in the sea of Okhotsk (based on data from stable carbon- and nitrogen-isotope analysis) // Russ. J. Mar. Biol. 2014. Vol. 40. P. 519-531.
  26. 26. Колтунов А.М., Тищенко П.Я., Звалинский В.И. и др. Карбонатная система Амурского лимана и прилегающих морских акваторий // Океанология. 2009. Т. 49, № 5. С. 694-706.
  27. 27. Звалинский В.И., Тищенко П.Я., Колтунов А.М. и др. Карбонатная система, гидрохимические и продукционные характеристики нижнего течения реки Амур / ред. В.П. Челомин. Владивосток: Дальнаука, 2009. С. 35-53.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library