- PII
- S3034530825040038-1
- DOI
- 10.7868/S3034530825040038
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 4
- Pages
- 28-39
- Abstract
- The paper presents a method for forming a hybrid protective coating on MA8 alloy formed by plasma electrolytic oxidation (PEO) with subsequent impregnation of the resulting heteroxide layer with cerium compounds and biopolymer treatment. The coating has a developed surface and contains magnesium, oxygen, calcium and phosphorus, which imparts bioactive properties to it. The introduction of cerium nitrate into the coating increases corrosion resistance without damaging the coating structure. Electrochemical studies (PDP and EIS) confirmed a significant improvement in the protective properties of hybrid coatings: the GP-NC01 sample demonstrates a 5,9-fold decrease in the corrosion current density and a 22-fold increase in polarization resistance compared to the base PEO coating. Volumetric tests revealed a 4-fold decrease in the volume of released hydrogen after 7 days of exposure to NaCl. The highest inhibitor efficiency (83%) was achieved for samples with a hybrid coating, which confirms the promise of a combined approach for protecting magnesium alloys.
- Keywords
- магний биодеградация защитные покрытия плазменное электролитическое оксидирование ингибиторы коррозии нитрат церия поликапролактон
- Date of publication
- 21.08.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 44
References
- 1. Гнеденков С.В., Синебрюхов С.Л., Хрисанфова О.А., Егоркин В.С., Машталяр Д.В., Сидорова М.В., Гнеденков А.С., Волкова Е.Ф. Свойства покрытий, сформированных на магниевом сплаве МА8 методом плазменного электролитического оксидирования // Вестн. ДВО РАН. 2010. № 5. С. 35–46.
- 2. Гнеденков А.С., Синебрюхов С.Л., Филонина В.С., Сергиенко В.И., Гнеденков С.В. Физико-химические основы локальной гетерогенной коррозии магниевых и алюминиевых сплавов. М.: ТЕХНОСФЕРА, 2022. 424 с. DOI: 10.22184/978-5-94836-661-6
- 3. Gnedenkov A.S. et al. Corrosion of the welded aluminium alloy in 0.5 M NaCl solution. Part 2: Coating protection // Materials (Basel). 2018. Vol. 11, № 11. P. 2177.
- 4. Гнеденков С.В., Хрисанфова О.А., Синебрюхов С.Л., Пузь А.В., Гнеденков А.С. Композиционные защитные покрытия на поверхности никелида титана // Коррозия: материалы, защита. 2007. Vol. 2. P. 20–25.
- 5. Gnedenkov A.S. et al. Design of self-healing PEO-based protective layers containing in situ grown LDH loaded with inhibitor on the MA8 magnesium alloy // Journal of Magnesium and Alloys. 2023. Vol. 11, No. 11. P. 3688–3709. DOI: 10.1016/j.jma.2023.07.016.
- 6. Gnedenkov A.S. et al. The effect of smart PEO-coatings impregnated with corrosion inhibitors on the protective properties of AlMg3 aluminum alloy // Materials. 2023. Vol. 16, No. 6. P. 2215. DOI: 10.3390/ma16062215.
- 7. Gnedenkov A.S. et al. Carboxylates as green corrosion inhibitors of magnesium alloy for biomedical application // Journal of Magnesium and Alloys. 2024. Vol. 12, No. 7. P. 2909–2936. DOI: 10.1016/j. jma.2024.07.004.
- 8. Гнеденков А.С., Синебрюхов С.Л., Марченко В.С., Номеровский А.Д., Кононенко Я.И., Сергиенко В.И., Гнеденков С.В. Гибридные покрытия с эффектом самозалечивания на поверхности функциональных материалов // Вестник ДВО РАН. 2024. № 6. С. 41–55.
- 9. Guo J. et al. An anti-stripping and self-healing micro-arc oxidation/acrylamide gel composite coating on magnesium alloy AZ31 // Materials Letters. 2020. Vol. 260. P. 126912. DOI: 10.1016/j.matlet.2019.126912.
- 10. Matsuda T. et al. Self-Healing Ability and Particle Size Effect of Encapsulated Cerium Nitrate into pH Sensitive Microcapsules / T. Matsuda, N. Jadhav, K. B. Kashi [et al.] // Progress in Organic Coatings. 2016. Vol. 90. P. 425–430. DOI: 10.1016/j.porgcoat.2015.10.021.
- 11. Щербаков А.Б., Иванова О.С., Спивак Н.Я. и др. Синтез и биомедицинские применения нанодисперсного диоксида церия. Томск: Изд. Дом Томского гос. ун-та, 2016. 474 с.
- 12. Kuznetsova M.N., Zhilkina V.Y. Nanoparticles of cerium oxide. The application and cerium oxide toxicity assessment // Pharmacy and Pharmaceutical Technology. 2021. № 2. P. 38–43. DOI: 10.33920/ med-13-2102-02.
- 13. Nandhini G. et al. Study of polycaprolactone/curcumin loaded electrospun nanofibers on AZ91 magnesium alloy // Materials Today: Proceedings. 2020. Vol. 33. P. 2170–2173. DOI: 10.1016/j. matpr.2020.03.327.
- 14. Dhanasekaran N.P.D. et al. Recent advancement in biomedical applications of polycaprolactone and polycaprolactone-based materials // Encyclopedia of Materials: Plastics and Polymers. 2022. Vol. 4. P. 795–809. https://doi.org/10.1016/b978-0-12-820352-1.00217-0
- 15. Mavis B. et al. Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate // Acta Biomaterialia. 2009. Vol. 5, No. 8. P. 3098–3111. DOI: 10.1016/j.actbio.2009.04.037.
- 16. Li L.-Y. et al. Advances in functionalized polymer coatings on biodegradable magnesium alloys – A review // Journal of Materials Science & Technology. 2018. Vol. 79. P. 23–36.
- 17. Zhao X. et al. 3D-printed Mg-1Ca/polycaprolactone composite scaffolds with promoted bone regeneration // Journal of Magnesium and Alloys. 2022. DOI: 10.1016/j.jma.2022.07.002.
- 18. An K. et al. Synergistic control of wetting resistance and corrosion inhibition by cerium to enhance corrosion resistance of superhydrophobic coating // Colloids and Surfaces. A: Physicochemical and Engineering Aspects. 2022. Vol. 653. P. 129874. DOI: 10.1016/j.colsurfa.2022.129874.
- 19. Zahedi Asl V. et al. The effect of cerium cation on the microstructure and anti-corrosion performance of LDH conversion coatings on AZ31 magnesium alloy // Journal of Alloys and Compounds. 2020. Vol. 821. P. 153248. DOI: 10.1016/j.jallcom.2019.153248.
- 20. Zimou J. et al. Structural, morphological, optical, and electrochemical properties of Co-doped CeO2 thin films // Materials Science in Semiconductor Processing. 2021. Vol. 135. P. 106049. DOI: 10.1016/j. mssp.2021.106049.
- 21. Boudellioua H. et al. Effects of polyethylene glycol (PEG) on the corrosion inhibition of mild steel by cerium nitrate in chloride solution // Applied Surface Science. 2019. Vol. 473. P. 449–460. DOI: 10.1016/j.apsusc.2018.12.164.
- 22. Stojadinović S. Plasma electrolytic oxidation of metals. // Journal of the Serbian Chemical Society. 2013. Vol. 78(5). P. 713–716. https://doi.org/10.2298/JSC121126129S
- 23. Wang D. et al. Inhibitive effect of sodium molybdate on corrosion behaviour of AA6061 aluminium alloy in simulated concrete pore solutions // Construction and Building Materials. 2021. Vol. 270. P. 121463. DOI: 10.1016/j.conbuildmat.2020.121463.
- 24. Wang J.-L. et al. The unexpected role of benzotriazole in mitigating magnesium alloy corrosion: A nucleating agent for crystalline nanostructured magnesium hydroxide film // Journal of the Electrochemical Society. 2015. Vol. 162, No. 8. P. C403–C411. DOI: 10.1149/2.0781508jes.
- 25. Shahini M.H. et al. Recent advances in biopolymers/carbohydrate polymers as effective corrosion inhibitive macro-molecules: A review study from experimental and theoretical views // Journal of Molecular Liquids. 2021. Vol. 325. P. 115110. DOI: 10.1016/j.molliq.2020.115110.
- 26. Gnedenkov A.S. et al. Hybrid coatings for active protection against corrosion of Mg and its alloys // Polymers. 2023. Vol. 15, No. 14. P. 3035. DOI: 10.3390/polym15143035.