RAS PresidiumВестник Дальневосточного отделения Российской академии наук Vestnik of the Far East Branch of the Russian Academy of Sciences

  • ISSN (Print) 0869-7698
  • ISSN (Online) 3034-5308

Characteristics and properties of TiO–SiO–Bi coatings on titanium formed by plasma electrolytic oxidation

PII
S3034530825040021-1
DOI
10.7868/S3034530825040021
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
19-27
Abstract
Film composites Ti/TiO–SiO–Bi were formed by the method of one-stage pulsed plasma electrolytic oxidation (PEO). The obtained samples were studied by the methods of X-ray phase analysis, energy-dispersive analysis, electron microscopy, diffuse reflectance and impedance spectroscopy. X-ray phase analysis showed that all PEO coatings contain metallic bismuth and titanium oxide in the modifications of rutile and anatase. It is shown that a change in the pulse duration has a significant effect on the morphology, elemental composition and optical properties of the coatings. Analysis of the Mott–Schottky diagrams showed that all the obtained composites are n-type semiconductors. For all bismuth-modified samples, a shift in the potentials of flat bands to the cathode region is observed compared to the unmodified sample, which indicates the formation of a Schottky barrier at the metal-semiconductor interface. The number of charge carriers (N) increases with increasing PEO pulse duration, but in all cases it is lower compared to the Ti/TiO sample. It was found that modification of titanium dioxide films with bismuth leads to an improvement in their optical properties and the emergence of stable photocurrents under the action of visible light.
Keywords
плазменно-электролитическое оксидирование титан висмутоодержащие пленки фотоэлектрохимические свойства дендритные структуры
Date of publication
21.08.2025
Year of publication
2025
Number of purchasers
0
Views
68

References

  1. 1. Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode // Nature. 1972. Vol. 238. P. 37–38. DOI: 10.1038/238037a0.
  2. 2. Kudo A., Miseki Y. Heterogeneous photocatalyst materials for water splitting // Chem. Soc. Rev. 2009. Vol. 38. P. 253–278. DOI: 10.1039/B800489G.
  3. 3. Chen X., Mao S.S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications // Chem. Rev. 2007. Vol. 107. P. 2891–2959. DOI: 10.1021/cr0500535.
  4. 4. Henderson M.A. A surface science perspective on TiO₂ photocatalysis // Surf. Sci. Rep. 2011. Vol. 66. P. 185–297. DOI: 10.1016/j.surfrep.2011.01.001.
  5. 5. Khan S.U.M., Al-Shahry M., Ingler W.B. Efficient photochemical water splitting by a chemically modified n-TiO₂ // Science. 2002. Vol. 73. P. 349–361. DOI: 10.1126/science.1075035.
  6. 6. Charu N., Pankaj K., Jyoti R., Mohit S. Carbon-doped Titanium Dioxide Nanoparticles for Visible Light Driven Photocatalytic Activity // Appl. Surf. Sci. 2021. Vol. 554. P. 149553. DOI: 10.1016/j. apsusc.2021.149553.
  7. 7. Liu G., Wang L., Yang H.G., Cheng H.-M., Lu G.Q. Titanium dioxide crystals with tailored facets // Chem. Rev. 2014. Vol. 114. P. 9559–9612. DOI: 10.1021/cr400621z.
  8. 8. Li X., Yu J., Low J., Fang Y. et al. Engineering heterogeneous semiconductors for solar water splitting // J. Mater. Chem. A. 2015. Vol. 6. P. 2485–2534. https://doi.org/10.1039/C4TA04461D
  9. 9. Wang Q., Domen K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies // Chem. Rev. 2020. Vol. 120. P. 919–985. https://doi.org/10.1021/acs. chemrev.9b00201
  10. 10. Jiang C., Moniz S.J.A., Wang A. et al. Photoelectrochemical devices for solar water splitting – materials and challenges // Chem. Soc. Rev. 2017. Vol. 15. P. 4645–4660. DOI: 10.1039/C6CS00306K.
  11. 11. Vasilyeva M.S., Lukiyanchuk I.V., Sergeev A.A. et al Plasma electrolytic synthesis and characterization of oxide coatings with MWO4 (M = Co, Ni, Cu) as photo-Fenton heterogeneous catalysts // Surf. Coatings. Technol. 2021. Vol. 424. 127640. DOI: 10.1016/J.SURFCOAT.2021.127640.
  12. 12. Wang X., Li T.-T., Zheng Y.-Q. Co3O4 nanosheet arrays treated by defect engineering for enhanced electrocatalytic water oxidation // Int. J. Hydrogen Energy. 2018. Vol. 43. P. 2009–2017. DOI: 10.1016/j.ijhydene.2017.12.023.
  13. 13. Rajbhandari A., Manandhar K., Pradhananga R.R. Mott–Schottky Analysis of Laboratory Prepared Ag₂S–AgI Membrane Electrode // J. Nepal Chem. Soc. 2013. Vol. 28. P. 89–93. DOI: 10.3126/jncs.v28i0.8113.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library