RAS PresidiumВестник Дальневосточного отделения Российской академии наук Vestnik of the Far East Branch of the Russian Academy of Sciences

  • ISSN (Print) 0869-7698
  • ISSN (Online) 3034-5308

Embedding of magnetoactive particles from slurry electrolytes into PEO coatings on titanium

PII
10.31857/S0869769824060079-1
DOI
10.31857/S0869769824060079
Publication type
Review
Status
Published
Authors
Volume/ Edition
Volume / Issue number 6
Pages
87-103
Abstract
The paper summarizes the literature data on plasma electrolytic treatment of titanium in electrolytes with dispersed magnetoactive particles in order to form surface structures with certain magnetic properties. The compositions of electrolytes, process parameters and magnetic properties of the resulting coatings are presented. Depending on the chemical nature and characteristics of the particles, an inert or reactive mechanism of their introduction from the electrolyte into the growing coatingsis carried out. It is shown that metal oxide particles located on the surface, mainly in pores, and in the coating bulk make the main contribution to the magnetic properties of the samples. By changing the electrolyte formula and the concentration of components, it is possible to control the composition of the particles and, accordingly, the magnetic characteristics of the coating.
Keywords
плазменно-электролитическое оксидирование электролиты-суспензии титан магнитные свойства частицы в порах
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Пухир Г.А., Махмуд М.Ш., Насонова Н.В. и др. Защитные свойства экранов электромагнитного излучения СВЧ-диапазона на основе комбинированных, диэлектрических и магнитных порошковых компонентов // Доклады БГУИР. 2011. Т. 60, № 6. С. 94–97.
  2. 2. Росляков И.В., Напольский К.С., Елисеев А.А. и др. Синтез магнитных наночастиц с контролируемой анизотропией функциональных свойств в матрице из пористого оксида алюминия // Российские нанотехнологии. 2009. Т. 4, № 3/4. С. 69–72.
  3. 3. Абдулхади Х.Д.А., Аль-Машатт Е.А.А., Богуш В.А. и др. Электромагнитные экраны на основе алюминия, его оксидов и углеродных волокон. Технологии, конструкции и свойства: монография. Минск: Бестпринт, 2021. 120 с.
  4. 4. Vladimirov B.V., Krit B.L., Lyudin V.B. et al. Microarc discharge oxidizing of magnesium alloys: a review // Surf. Eng. Appl. Electrochem. 2014. Vol. 50 (3). P. 195–232. https://doi.org/10.3103/S1068375514030090.
  5. 5. Сибилева С.В., Козлова Л.С. Обзор технологии получения покрытий на титановых сплавах плазменным электролитическим оксидированием // Авиационные материалы и технологии. 2016. № S2 (44). С. 3–10. https://doi.org/10.18577/2071-9140-2016-0-S2-3-10.
  6. 6. Shrestha S., Dunn B.D. Advanced plasma electrolytic oxidation treatment for protection of light weight materials and structures in a space environment // Surface World. 2007. № 11. P. 4044.
  7. 7. Борисов А.М., Крит Б.Л., Людин В.Б. и др. Микродуговое оксидирование в электролитах-суспензиях (обзор) // Электронная обработка материалов. 2016. Т. 52, № 1. С. 50–77.
  8. 8. Jiang B.L., Wang Y.M. Plasma electrolytic oxidation treatment of aluminum and titanium alloys // Surface Engineering of Light Alloys: Aluminum, Magnesium and Titanium Alloys. 2010. P. 110–154. https://doi.org/10.1533/9781845699451.2.110.
  9. 9. Yang C., Chen P., Wu W et al. A Review of Corrosion-Resistant PEO Coating on Mg Alloy // Coatings. 2024. Vol. 14 (4). P. 451. https://doi.org/10.3390/coatings14040451.
  10. 10. Ракоч А.Г., Стрекалина Д.М., Гладкова А.А. Износостойкие покрытия на титановом сплаве ВТ6, получаемые методом ПЭО // Цветные металлы. 2016. № 2. C. 80–84. https://doi.org/10.17073/1997-308X-2016-1-44-50.
  11. 11. Tang H., Xin T.Z., Sun Q. at al. Influence of FeSO4 concentration on thermal emissivity of coatings formed on titanium alloy by micro-arc oxidation // Appl. Surf. Sci. 2011. Vol. 257, N 24. P. 10839–10844. https://doi.org/10.1016/j.apsusc.2011.07.118.
  12. 12. Yao Z.P., Hu B., Shen Q.X. et al. Preparation of black high absorbance and high emissivity thermal control coating on Ti alloy by plasma electrolytic oxidation // Surf. Coat. Technol. 2014. Vol. 253. P. 166–170. https://doi.org/10.1016/j.surfcoat.2014.05.032.
  13. 13. Kurze P., Krysmann W., Schreckenbach J. et al.Coloured ANOF layers on aluminium // Cryst. Res. Technol. 1987. Vol. 22 (1). P. 53–58. https://doi.org/10.1002/crat.2170220115.
  14. 14. Terleeva O.P., SharkeevYu.P., Slonova A.I. et al. Effect of microplasma modes and electrolyte composition on micro-arc oxidation coatings on titanium for medical applications // Surf. Coat. Technol. 2010. Vol. 205 (6). P. 1723–1729. https://doi.org/10.1016/j.surfcoat.2010.10.019.
  15. 15. Samadi P., Witonska I.A. Plasma electrolytic oxidation layers as alternative supports for metallic catalysts used in oxidation reaction for environmental application // Catal. Commun. 2023. Vol. 181. P. 106722. https://doi.org/10.1016/j.catcom.2023.106722.
  16. 16. Egorkin V.S., Mashtalyar D.V., Gnedenkov A.S. et al. Icephobic performance of combined fluorine-containing composite layers on Al-Mg-Mn–Si alloy surface // Polymers. 2021. Vol. 13 (21). P. 3827. https://doi.org/10.3390/polym13213827.
  17. 17. Михеев А.Е., Савельев Д.О., Раводина Д.В., Гирн А.В. Нанесение оптически черного светопоглощающего покрытия на сплавы алюминия и титана // Сибирский аэрокосмический журнал. 2022. Т. 23, № 2. С. 305–314. https://doi.org/10.31772/2712-8970-2022-23-2-305-314.
  18. 18. 18 Jin F.Y., Tong H.H., Li J. et al. Structure and microwave-absorbing properties of Fe-particle containing alumina prepared by micro-arc discharge oxidation // Surf. Coat. Technol. 2006. Vol. 201. P. 292–295. https://doi.org/10.1016/j.surfcoat.2005.11.116.
  19. 19. Jagminas A., Ragalevicius R., Mazeika K. et al. A new strategy for fabrication Fe2O3/SiO2 composite coatings on the Ti substrate // J. Solid State Electrochemistry. 2010. Vol. 14 (2). P. 271–277. DOI: 10.1007/s10008-009-0820-7.
  20. 20. Гнеденков С.В., Синебрюхов С.Л., Ткаченко И.А. и др. Магнитные свойства поверхностных слоев, формируемых на титане методом плазменно-электролитического оксидирования // Перспективные материалы. 2011. № 5. С. 55–62.
  21. 21. Rogov A.B., Terleeva O.P., Mironov I.V., Slonova A.I. Iron-containing coatings obtained by microplasma method on aluminum with usage of homogeneous electrolytes // Appl. Surf. Sci. 2012. Vol. 258 (7). P. 2761. https://doi.org/10.1016/j.apsusc.2011.10.128.
  22. 22. Baranova T.A., Chubenko A.K., Ryabikov A.E. et al. Microarc synthesis of nanostructured radiation-absorbing coatings on aluminum and titanium surfaces // IOP Conf. Ser. Mat. Sci. 2018. Vol. 286. P. 012037. https://doi.org/10.1088/1757-899X/286/1/012037.
  23. 23. Руднев В.С., Устинов А.Ю., Лукиянчук И.В. и др. Магнитоактивные оксидные слои на титане, сформированные плазменно-электролитическим методом // Физикохимия поверхности и защита материалов. 2010. Т. 46, № 5. С. 494–500.
  24. 24. Adigamova M.V., Lukiyanchuk I.V., Morozova V.P. et al. Fe and/or Co-containing coatings on titanium: Features of plasma electrolytic formation, composition, and magnetic properties // Surf. Coat. Technol. 2022. Vol. 446. P. 128790. https://doi.org/10.1016/j.surfcoat.2022.128790.
  25. 25. Харитонский П.В., Фролов А.М., Руднев В.С. и др. Магнитные свойства железосодержащих покрытий, полученных методом плазменно-электролитического оксидирования // Известия РАН. Серия физическая. 2010. Т. 74, № 10. С. 1465–1467.
  26. 26. Руднев В.С., Адигамова М.В., Лукиянчук И.В. и др. Влияние условий формирования на ферромагнитные свойства железосодержащих оксидных покрытий на титане // Физикохимия поверхности и защита материалов. 2012. Т. 48, № 5. С. 459–469.
  27. 27. Адигамова М.В., Руднев В.С., Лукиянчук И.В. и др. Влияние коллоидных Fe-содержащих частиц в электролите на состав и магнитные характеристики оксидных слоев на титане, сформированных методом плазменно-электролитического оксидирования // Физикохимия поверхности и защита материалов. 2016. Т. 52, № 3. С. 324–330.
  28. 28. Rudnev V.S., Kharitonskii P.V., Kosterov A. et al. Magnetism of Fe-doped Al2O3 and TiO2 layers formed on aluminum and titanium by plasma-electrolytic oxidation // J. Alloys Compd. 2020. Vol. 816. P. 152579. https://doi.org/10.1016/j.jallcom.2019.152579.
  29. 29. Rudnev V.S., Adigamova M.V., Lukiyanchuk I.V. et al. Oxide coatings with ferromagnetic characteristics on Al, Ti, Zr and Nb // Surf. Coat. Technol. 2020. Vol. 381. P. 125180. https://doi.org/10.1016/j.surfcoat.2019.125180.
  30. 30. Адигамова М.В., Лукиянчук И.В., Ткаченко И.А., Морозова В.П. Магнитные свойства композитов «Fe+Ni-содержащий TiO2-слой/Ti» // Физикохимия поверхности и защита металлов. 2022. Т. 58, № 3. С. 289–298. DOI: 10.31857/S0044185622030020.
  31. 31. Xiaopeng Lu, Carsten Blawert, Yuanding Huang et al. Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles // Electrochimica Acta. 2016. Vol. 187. P. 20–33. https://doi.org/10.1016/j.electacta.2015.11.033.
  32. 32. Adigamova M.V., Malyshev I.V., Lukiyanchuk I.V., Tkachenko I.A. A novel approach to obtaining LaMnO3/TiO2/Ti composites: Features of plasma electrolytic formation, composition, and magnetic properties // J. Alloys Compd. 2023. Vol. 967. P. 171675. https://doi.org/10.1016/j.jallcom.2023.171675.
  33. 33. Adigamova M.V., Malyshev I.V., Lukiyanchuk I.V., Tkachenko I.A., Saiankina K.A. Effect of lanthanum manganite particles on the structure and magnetic behavior of PEO coatings on titanium // Mater. Chem. Phys. 2024. Vol. 320. P. 129479. https://doi.org/10.1016/j.matchemphys.2024.129479.
  34. 34. Demin R.V., Koroleva L.I., Szymszak R., Szymszak H. Experimental evidence for a magnetic two-phase state in manganites // JETP Letters. 2002. Vol. 75. P. 331–335.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library