- PII
- 10.31857/S0869769824040022-1
- DOI
- 10.31857/S0869769824040022
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 4
- Pages
- 44-59
- Abstract
- Diffiiculties in the anthropogenic concept of global warming are discussed and a seismogenic trigger mechanism for climate change is proposed.The essence of this mechanism is that methane contained in the micropores of frozen rocks in a locked state can be released as a result of the destruction of the microstructure of the environment due to additional stresses caused by the trigger effect of deformation waves passing through gas-saturated areas of sedimentary strata. The waves themselves are generated by the strongest earthquakes that occur in subduction zones. With a characteristic speed of deformation waves of the order of 100 km/year, they travel a distance of about 2000–2500 km from the Aleutian and Kuril-Kamchatka subduction zones to the Arctic zone in approximately 20–25 years. This corresponds to the time difference between a series of the most powerful earthquakes with a magnitude greater than 8.5, which occurred in these zones in the interval 1952–1965, and the beginning of a sharp climate warming in 1980. After the start of the gas filtration process as a result of the destruction of the pore microstructure and a sharp increasing the permeability of the geomedium due to the impact of a deformation wave, the process of methane emission can continue autonomously for tens and even hundreds of years, depending on the thickness of the disturbed gas-saturated layer. This explains the ongoing emission of methane on the Arctic shelf for the last forty-odd years after the strongest earthquakes of the middle of the last century that initiated it.
- Keywords
- cильнейшие землетрясения потепление климата Арктика газгидраты эмиссия метана триггерный механизм деформационные волны
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 15
References
- 1. Данилов-Данильян В. И., Катцов В. М., Порфирьев Б. Н. Экология и климат: где мы сейчас и где будем через два-три десятилетия. Ситуация в России // Вестник Российской академии наук. 2023. Т. 93, № 11. С. 1032–1046.
- 2. Neukom R., Barboza L. A., Erb M. P., Shi Feng, Emile-geay J., Evans M. N. et al. Global mean temperature reconstructions over the Common Era. figshare. Collection. 2019. https://doi.org/10.6084/m9.figshare.c.4507043.v2
- 3. AGES2k Consortium. A global multiproxy database for temperature reconstructions of the Common Era. Scientific Data 4. 2017. 170088 EP. https://doi.org/10.1038/sdata.2017.88.
- 4. PAGES2k Consortium. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era // Nat. Geosci. 2019. Vol. 12. P. 643–649. https://doi.org/10.1038/s41561-019-0400-0
- 5. IPCC Scientific Assessment 1990: Climate Change 1990 / eds. J. T. Houghton, G. J. Jenkins, J. J. Ephraums. Cambridge, Great Britain; New York, NY, USA; Melbourne, Australia: Cambridge University Press, 1990. 410 p.
- 6. IPCC, 2001: Climate Change 2001: Synthesis Report. A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Integovernmental Panel on Climate Change / eds.R.T.Watson, and the Core Writing Team. Cambridge, United Kingdom; New York, NY, USA: Cambridge University Press, 2001. 398 p.
- 7. Moberg A., Sonechkin D., Holmgren K. et al. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data // Nature. 2005. Vol. 433. P. 613–617. https://doi.org/10.1038/nature03265.
- 8. Lamb H. H. The early medieval warm epoch and its sequel // Palaeogeogr. Palaeoclimatol. Palaeoecol. 1965. Vol. 1. P. 13–37.
- 9. Mann M. E., Bradley R. S., Hughes M. K. Global-Scale Temperature Patterns and Climate Forcing Over the Past Six Centuries // Nature. 1998. Vol. 392. P. 779–787.
- 10. Masson-Delmotte V., Schulz M., Abe-Ouchi A., Beer J., Ganopolski A., González Rouco J. F., Jansen E., Lambeck K., Luterbacher J., Naish T., Osborn T., Otto-Bliesner B., Quinn T., Ramesh R., Rojas M., Shao X., Timmermann A. Information from Paleoclimate Archives. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / eds. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley. Cambridge, United Kingdom; New York, NY, USA: Cambridge University Press, 2013.
- 11. Friedlingstein P., O‘Sullivan M., Jones M. W. et al. Global Carbon Budget 2022 // Earth Syst. Sci. Data. 2022. Vol. 14. P. 4811–4900. https://doi.org/10.5194/essd-14-4811-2022.
- 12. Lobkovsky L. I. Seismogenic-triggering mechanism of gas emission activizations on the Arcticshelf and associated phases of abrupt warming // Geosciences. 2020. Vol. 10. P. 428.
- 13. Lobkovsky L. I., Baranov A. A., Ramazanov M. M., Vladimirova I. S., Gabsatarov Y. V., Semiletov I. P., Alekseev D. A. Trigger Mechanisms of Gas Hydrate Decomposition, Methane Emissions, and Glacier Breakups in Polar Regions as a Result of Tectonic Wave Deformation // Geosciences. 2022. Vol. 12. P. 372.
- 14. Lobkovsky L. I., Baranov A. A., Garagash I. A., Ramazanov M. M., Vladimirova I. S., Gabsatarov Y. V., Alekseev D. A., Semiletov I. P. Large Earthquakes in Subduction Zones around the Polar Regions as a Possible Reason for Rapid Climate Warming in the Arctic and Glacier Collapse in West Antarctica // Geosciences. 2023. Vol. 13. P. 171.
- 15. Climate at a Glance: Global Time Series// NOAA National Centers for Environmental information. URL: https://www.ncei.noaa.gov/cag/ (дата обращения: 15.09.2022).
- 16. Lay T. The surge of great earthquakes from 2004 to 2014 // Earth and Planetary Science Letters. 2015. Vol. 409. P. 133–146.
- 17. Shakhova N. E., Semiletov I. P. Methane Hydrate Feedbacks // Arctic Climate Feedbacks: Global Implications / eds. Martin Sommerkorn, Susan Joy Hassol. Published by WWF International Arctic Programme August, 2009. P. 81–92. ISBN: 978-2-88085-305-1.
- 18. Shakhova N., Semiletov I., Salyuk A., Yusupov V., Kosmach D., Gustafsson O. Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf // Science. 2010. Vol. 327, N5970. P. 1246–1250. DOI: 10.1126/science.1182221.
- 19. Shakhova N., Semiletov I., Leifer I., Sergienko V., Salyuk A., Kosmach D., Chernikh D., Stubbs C., Nicolsky D., Tumskoy V., Gustafsson O. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf // Nat. Geosci. 2014. Vol. 7, N1. P. 64–70. DOI: 10.1038/ngeo2007, 2014.
- 20. Shakhova N., Semiletov I., Sergienko V., Lobkovsky L., Yusupov V., Salyuk A., Salomatin A., Chernykh D., Kosmach D., Panteleev G., Nicolsky D., Samarkin V., Joye S., Charkin A., Dudarev O., Meluzov A., Gustafsson Ö. The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice // Phil. Trans. R. Soc. A. 2015. Vol. 373. 20140451. DOI: 10.1098/rsta.2014.0451.
- 21. Chernykh D., Shakhova N., Yusupov V., Gershelis E., Morgunov B., Semiletov I. First Calibrated Methane Bubble Wintertime Observations in the Siberian Arctic Seas: Selected Results from the Fast Ice // Geosciences. 2023. Vol. 13. 228. https://doi.org/10.3390/geosciences13080228.
- 22. Shakhova N., Semiletov I., Chuvilin E. Understanding the permafrost–hydrate system and associated methane releases in the East Siberian Arctic Shelf // Geosciences. 2019. Vol. 9. 251. DOI: 10.3390/geosciences9060251.
- 23. Nicolsky D. J., Romanovsky V. E., Romanovskii N. N., Kholodov A. L., Shakhova N. E., Semiletov I. P. Modeling sub-sea permafrost in the East Siberian Arctic Shelf: The Laptev Sea region // J. Geophys. Res. 2012. Vol. 117. F03028. DOI: 10.1029/2012JF002358, 2012.
- 24. Romanovskii N. N., Hubberten H.-W., Gavrilov A. V., Eliseeva A. A., Tipenko G. S. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas // Geo-Mar. Lett. 2005. Vol. 25. P. 167–182.
- 25. Shakhova N., Semiletov I., Gustafsson O., Sergienko V., Lobkovsky L., Dudarev O., Tumskoy V., Grigoriev M., Mazurov A., Salyuk K. et al. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf // Nat. Commun. 2017. Vol. 8. 15872.
- 26. Лобковский Л. И., Баранов А. А., Бобров А. М., Чуваев А. В. Глобальная геодинамическая модель современной Земли и ее приложение для Арктического региона // Доклады Российской академии наук. 2024. DOI: 10.1134/S1028334X23603000.
- 27. Гарагаш И. А., Лобковский Л. И. Деформационные тектонические волны как возможный триггерный механизм активизации эмиссии метана в Арктике // Арктика: экология и экономика. 2021. Т. 11, № 1. С. 42–50.
- 28. Лобковский Л. И., Рамазанов М. М. Термомеханические волны в системе упругая литосфера – вязкая астеносфера // Известия Российской академии наук. Механика жидкости и газа. 2021. № 6. С. 4–18.
- 29. Лобковский Л. И., Баранов А. А., Владимирова И. С., Габсатаров Ю. В., Алексеев Д. А. Возможный сейсмогенно-триггерный механизм эмиссии метана, разрушения ледников и потепления климата в Арктике и Антарктике // Физика Земли. 2023. № 3. C. 33–47.
- 30. Lan X., Thoning K. W., Dlugokencky E. J. Trends in globally-averaged CH 4 , N 2 O, and SF 6 determined from NOAA Global Monitoring Laboratory measurements. 2015. Version 2023-02. https://doi.org/10.15138/P8XG-AA10.
- 31. Dlugokencky E. J., Steele L. P., Lang P. M., Masarie K. A. The growth rate and distribution of atmospheric methane // J. Geophys. Res. 1994. Vol. 99. P. 17021–17043. https://doi.org/10.1029/94JD01245.
- 32. Лобковский Л. И., Баранов А. А., Владимирова И. С., Алексеев Д. А. Сильнейшие землетрясения и деформационные волны как возможные триггеры потепления климата в Арктике и разрушения ледников в Антарктике // Вестник Российской академии наук. 2023. Т. 93, № 6. С. 526–538.
- 33. Лобковский Л. И., Рамазанов М. М. К теории фильтрации с двойной пористостью // Доклады Российской академии наук. Науки о Земле. 2019. Т. 484, № 3. С. 348–351.
- 34. Лобковский Л. И., Рамазанов М. М. Обобщенная модель фильтрации в трещиновато-пористой среде с низкопроницаемыми включениями и ее возможные приложения // Физика Земли. 2022. № 2. С. 144–154.
- 35. Minoura K., Imamura F., Sugawara D., Kono Y., Iwashita T. The 869 Jogan tsunami deposit and recurrence interval of large-scale tsunami on the Pacific coast of northeastern Japan // J. Nat. Disaster Sci. 2001. Vol. 23, N2. P. 83–88.
- 36. Ozawa S., Nishimura T., Suito H., Kobayashi T., Tobita M., Imakiire T. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake // Nature. 2011. Vol. 475. P. 373–377.
- 37. McCaffrey R. Global frequency of magnitude 9 earthquakes // Geology. 2008. Vol. 36, N3. P. 263–266.
- 38. Satake K., Atwater B. F. Long-term perspectives on giant earthquakes and tsunamis at subduction zones // Annu. Rev. Earth Planet. Sci. 2007. Vol. 35. P. 349–374.
- 39. Rajendran K. On the recurrence of great subduction zone earthquakes // Current Science. Special section: Earth Sciences. 2013. Vol. 104, N7. P. 880–892.
- 40. Shennan I., Barlow N., Carver G., Davies F., Garrett E., Hocking E. Great tsunamigenic earthquakes during the last 1000 years on the Alaska megathrust // Geology. 2014. Vol. 42, N8. P. 687–690.