RAS PresidiumВестник Дальневосточного отделения Российской академии наук Vestnik of the Far East Branch of the Russian Academy of Sciences

  • ISSN (Print) 0869-7698
  • ISSN (Online) 3034-5308

Features of performing technological operations using autonomous underwater vehicles equipped with multi-link manipulators

PII
10.31857/S0869769824030091-1
DOI
10.31857/S0869769824030091
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
165-177
Abstract
The article describes a new generalized approach to performing underwater contact (technological) operations in fully automatic mode using autonomous underwater vehicles equipped with multi-link manipulators. This approach involves the use of a special hull of the underwater vehicle, ensuring its high mobility and convenient control over all six degrees of freedom, as well as passive vertical stabilization when performing contact operations using a six-degree manipulator. The proposed new method for identifying the added masses and moments of inertia of the liquid attached to the moving links of the manipulator, as well as the coefficients of Coloumb friction, allows us to determine the external moments in the joints of the manipulator, providing an accurate force effect of its working tool on the objects of work. The maintenance of this predetermined effect is provided by a special system for stabilizing the position and orientation of the device at a given point in space, as well as the current thrust of its thrusters, taking into account the current configuration of the manipulator. The proposed methods, as well as devices and systems synthesized on their basis with elements of artificial intelligence, have already been partially tested on land and underwater robotic complexes, which guarantees their successful use in the creation of manipulative autonomous underwater vehicles of a new generation.
Keywords
автономный необитаемый подводный аппарат многозвенный манипулятор позиционно-силовое управление технологические операции
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Christ R. D., Wernli R. L. The ROV Manual. Elsevier, UK, 2013. 712 p.
  2. 2. Коноплин А. Ю., Денисов В. А., Даутова Т. Н., Кузнецов А. Л., Московцева А. В. Технология использования ТНПА для комплексного исследования глубоководных экосистем // Подводные исследования и робототехника. 2019. № 4 (30). С. 4–12.
  3. 3. Инзарцев А. В., Киселев Л. В., Костенко В. В., Матвиенко Ю. В., Павин А. М., Щербатюк А. Ф. Подводные робототехнические комплексы: системы, технологии, применение. Владивосток: ИПМТ ДВО РАН, 2018. 368 с.
  4. 4. Боровик А. И., Рыбакова Е. И., Галкин С. В., Михайлов Д. Н., Коноплин А. Ю. Опыт использования автономного необитаемого подводного аппарата «ММТ-3000» для исследований бентосных сообществ Антарктики // Океанология. 2022. Т. 62, № 5. С. 811–824.
  5. 5. Sahoo A., Dwivedy S. K., Robi P. S. Advancements in the field of autonomous underwater vehicle // Ocean Engineering. 2019. Vol. 181. P. 145–160.
  6. 6. Koval E. V. Automatic stabilization system of underwater manipulation robot // Proc. of OCEANS’94 OSATES Conf. Brest, France, 1994.Vol. 1. P. 807–812.
  7. 7. Ishitsuka M., Ishii K. Development of an underwater manipulator mounted for an AUV // Proc. of OCEANS2005 MTS/IEEE. Washington, USA, 2005. P. 1–6.
  8. 8. Cieslak P., Ridao P., Giergiel M. Autonomous underwater panel operation by GIRONA500 UVMS: A practical approach to autonomous underwater manipulation // Proc. of the 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, Washington, 2015. P. 529–536.
  9. 9. Филаретов В. Ф., Юхимец Д. А. Особенности синтеза высокоточных систем управления скоростным движением и стабилизацией подводных аппаратов в пространстве / под. ред. В. Ф. Филаретова. Владивосток: Дальнаука, 2016. 400 с.
  10. 10. Filaretov V., Zuev A., Timoshenko A. A Method for Constructing Adaptive Control Systems for Electric Drives of an Underwater Multi-Link Manipulator // Proc. of the International Russian Automation Conference. Sochi, Russia, 2023. P. 1028–1033.
  11. 11. Филаретов В. Ф., Зуев А. В., Губанков А. С. Управление манипуляторами при выполнении различных технологических операций. М.: Наука, 2018. 232 с.
  12. 12. Antonelli G. Underwater Robots. Springer International Publishing Switzerland, 2014. 279 p.
  13. 13. Ribas D., Palomeras N., Ridao P., Carreras M., Mallios A. Girona 500 AUV: From Survey to Intervention // IEEE/ASME Transactions on Mechatronics. 2012. Vol. 17, N1. P. 46–53.
  14. 14. Ribas D., Ridao P., Turetta A., Melchiorri C., Palli G., Fernández J. J., Sanz P. J. I-AUV Mechatronics Integration for the TRIDENT FP7 Project // IEEE/ASME Transactions on Mechatronics. 2015. Vol. 20, N5. P. 2583–2592.
  15. 15. Yoshikawa T. Force control of robot manipulators // Proc. of the IEEE Int. Conf. on Robotics and Automation. San Francisco, 2000. P. 220–225.
  16. 16. Гориневский Д. М., Формальский А. М., Шнейдер А. Ю. Управление манипуляционными системами на основе информации об усилиях. М.: Наука, 1994. 350 с.
  17. 17. Barbalata C., Dunnigan M. W., Petillot Y. Position/force operational space control for underwater manipulation // Robotics and Autonomous Systems. 2018. Vol. 100. P. 150–159.
  18. 18. Dai P., Lu W., Le K., Liu D. Sliding Mode Impedance Control for contact intervention of an I-AUV: Simulation and experimental validation // Ocean Engineering. 2020. Vol. 196. P. 106855.
  19. 19. Филаретов В. Ф., Юхимец Д. А., Мурсалимов Э. Ш. Создание универсальной архитектуры распределенного программного обеспечения мехатронного объекта // Программная инженерия. 2012. № 7. С. 14–21.
  20. 20. Palomer A., Ridao P., Youakim D., Ribas D., Forest J., Petillot Y. 3D laser scanner for underwater manipulation // Sensors. 2018. Vol. 18, N4. P. 1086.
  21. 21. Yukhimets D., Popova O. Method of automatic formation of the underwater manipulator motion program based on noise three-dimensional models // Proc. of the International Conference on Ocean Studies. Vladivostok, Russia, 2023. P. 1–6.
  22. 22. Craig J. J. Introduction to robotics: mechanics and control. Prentice Hall, 2003. 450 p.
  23. 23. Жирабок А. Н., Ир К. Ч. Виртуальные датчики в задаче функционального диагностирования нелинейных систем // Известия Российской академии наук. Теория и системы управления. 2022. № 1. С. 67–75.
  24. 24. Ikonen E., Najim K. Advanced process identification and control. Marsel Dekker Inc., 2002.
  25. 25. Fossen T. I. Guidance and control of ocean vehicles: Doctors Thesis / University of Trondheim, Norway. Chichester, England: John Wiley and Sons, 1999. P. 32–47. ISBN0471941131.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library