- PII
- 10.31857/S0869769824010072-1
- DOI
- 10.31857/S0869769824010072
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 1
- Pages
- 92-112
- Abstract
- The crystal structures of mixed-ligand sulfato-, selenato-, phosphato-, arsenato-, and chromato-fluoride complexes of uranyl studied by the single-crystal X-ray diffraction method have been systematized and discussed. The crystal chemical features of the structures of the mixed-ligand inorganic fluoride complexes of uranyl were determined: the coordination polyhedron of the hexavalent uranium atom in the structures of the mixed-ligand inorganic fluoride complexes of uranyl has a pentagonal-bipyramidal structure: the oxygen atoms of the uranyl group are located on the vertical axis of the pentagonal bipyramid, perpendicular to the equatorial plane in which five atoms are located. In the crystal structures of dimeric and polymeric chain mixed-ligand inorganic fluoride complexes of uranyl the fluoride bridges form fluoride atoms. Inorganic ligands combine dimers and polymeric chains into layers and three-dimensional formation.
- Keywords
- уранил фторид разнолигандный рентгеновский дифракционный метод пентагональная бипирамида структура
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 17
References
- 1. Davidovich R. L., Goreshnik E. A. Structural chemistry of fluoride complexes of uranyl // Struct. Chem. 2023. Vol. 34, N1. P. 265–284. http://doi.org/10.1007/s11224-022-02095-8.
- 2. Alcock N. W., Roberts M. M., Chakravorti M. C. Structure of Potassium catena-Di-μ-fluoro-difluorotetraoxo-di-μ-sulphato-diuranate(VI) Hydrate // Acta Crystallogr. 1980. Vol. B36. P. 687–690. https://doi.org/10.1107/S0567740880004141.
- 3. Михайлов Ю. Н., Горбунова Ю. Е., Митьковская Е. В., Сережкина Л. Б., Сережкин В. Н. Кристаллическая структура Rb[UO2(SO4)F] // Радиохимия. 2002. Т. 44. С. 290–292. https://doi.org/10.1023/A:1020652306275.
- 4. Сережкин В. Н., Солдаткина М. А. Кристаллическая структура NH4[UO2(SO4)F] // Коорд. химия. 1985. Т. 11, № 1. С. 103–105.
- 5. Doran M. B., Cockbain B. E., Norquist A. J., O’Hare D. The effects of hydrofluoric acid addition on the hydrothermal synthesis of templated uranium sulfates // Dalton Trans. 2004. Iss. 22. P. 3810–3814. https://doi.org/10.1039/B413062F.
- 6. Doran M. B., Cockbain B. E., O’Hare D. Structural variation in organically templated uranium sulfate fluorides // Dalton Trans. 2005. Iss. 10. P. 1774–1780. https://doi.org/10.1039/B504457J.
- 7. Сережкина Л. Б., Вологжанина А. В., Веревкин А. Г., Сережкин В. Н. Рентгенографическое исследование Rb[UO2(SeO4)F]·H2O // Радиохимия. 2011. Т. 53, № 4. С. 301–303.
- 8. Блатов В. А., Сережкина Л. Б., Сережкин В. Н., Трунов В. К. Кристаллическая структура NH4[UO2(SeO4) F]·H2O // Журн. неорг. химии. 1989. Т. 34. С. 162–164.
- 9. Ok K. M., Baek J., Halasyamani P. S., O’Hare D. New layered uranium phosphate fluorides: Syntheses, structures, characterizations, and ion-exchange properties of A(UO2)F(HPO4)·xH2O (A = Cs+, Rb+, K+; x = 0–1) // Inorg. Chem. 2005. Vol. 45. P. 10207–10214. https://doi.org/10.1021/ic061420d.
- 10. Ling J., Wu S., Chen F., Simonetti A., Shafer J. T., Albrecht-Schmitt T. E. Does iodate incorporate into layered uranyl phosphates under hydrothermal conditions? // Inorg. Chem. 2009. Vol. 48. P. 10995–11001. DOI: 10.1021/ic9011247.
- 11. Nelson A.-G.D., Alekseev E. V., Ewing R. C., Albrecht-SchmittT.E. Barium uranyl diphosphonates // J. Solid State Chem. 2012. Vol. 192. P. 153–160. https://doi.org/10.1016/j.jssc.2012.04.002.
- 12. Ok K. M., Doran M. B., O’Hare D. [(CH3)2NH(CH2)2NH(CH3)2][(UO2)2F2(HPO4)2]: a new organically templated layered uranium phosphate fluoride – synthesis, structure, characterization, and ion-exchange reaction // Dalton Trans. 2007. P. 3325–3329. DOI: 10.1039/b705759h.
- 13. Mandal S., Chandra M., Natarajan S. Synthesis, structure, and upconversion studies on organically templated uranium phosphites // Inorg. Chem. 2007. Vol. 46. P. 7935–7943. DOI: 10.1021/ic700866f.
- 14. Doran M. B., Norquist A. J., O’Hare D. Reactant-mediated diversity in uranyl phosphonates // Chem. Mater. 2003. Vol. 15. P. 1449–1455. https://doi.org/10.1021/cm021711u.
- 15. Adelani P. O., Albrecht-Schmitt T. E. Pillared and open-framework uranyl diphosphonates // J. Solid State Chem. 2011. Vol. 184. P. 2368–2373. https://doi.org/10.1016/j.jssc.2011.06.039.
- 16. Adelani P. O., Martinez N. A., Cook N. D., Burns P. C. Uranyl-organic hybrids designed from hydroxyphosphonate // Eur. J. Inorg. Chem. 2015. Vol. 2015, N2. P. 340–347. DOI: 10.1002/ejic.201402764.
- 17. Monteiro B., Fernandes J. A., Pereira C. C.L., Vilela S. M.F., Tomé J. P.C., Marçalo J., Almeida Paz F. A. Metal-organic frameworks based on uranyl and phosphonate ligands // Acta Crystallogr. 2014. Vol. B70. P. 28–36. DOI: 10.1107/S2052520613034781.
- 18. Zheng T., Gao Y., Chen L., Liu Z., Diwu J., Chai Z., Albrecht-Schmitt T.E., Wang S. A new chiral uranyl phosphonate framework consisting of achiral building units generated from ionothermal reaction: structure and spectroscopy characterizations // Dalton Trans. 2015. P. 18158–18166. DOI: 10.1039/c5dt02667a.
- 19. Rao V. K., Bharathi K., Prabhu K., Chandra M., Natarajan S. Two- and three-dimensional open-framework uranium arsenates: Synthesis, structure, and characterization // Inorg. Chem. 2010. Vol. 49. P. 2931–2947. https://doi.org/10.1021/ic902472h.
- 20. Serezhkin V. N., Peresypkina E. V., Novikov S. A., Virovets A. V., Serezhkina L. B. New fluorochromatouranylates of alkali metals: Synthesis and structure // Russ. J. Inorg. Chem. 2014. Vol. 59. P. 788–797. https://doi.org/10.1134/S003602361408018X.