- PII
- S30345308S0869769825010029-1
- DOI
- 10.7868/S3034530825010029
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 1
- Pages
- 19-30
- Abstract
- The paper studies the effect of monochromatic light of the red, green and blue spectrum ranges with different levels of irradiation intensity (30–1400 μmol/s⸳m2) on the development of potato microplants (Solanum tuberosumL., variety Red Scarlett). The highest values of plant height and weight parameters were observed in samples grown under red light, and the lowest in groups illuminated with blue light. Blue light limited stem growth and contributed more to the formation of large leaves. Morphometric parameters of plants grown under green light were higher than those grown under blue light, but lower than the values of samples from sections with red light. The following illumination intensities were optimal for the development of potato microplants: 500–600 μmol/s⸳m2under blue and green light, and 800–1000 μmol/s⸳m2under red light.
- Keywords
- картофель интенсивность света спектр света микрорастения
- Date of publication
- 03.02.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 87
References
- 1. Villavicencio G.E., Gámez V.A.J., Arellano M.A., Almeida H.J., Fernández J. Micropropagation in four potato genotypes and selection on vitro plants size as a survival ex vitro establishment // ActaHortic. 2007. Vol. 748. P. 223–227. https://doi.org/10.17660/ActaHortic.2007.748.30.
- 2. Rocha P.S.G., de Oliveira R.P., Scivittaro W.B. New light sources forin vitropotato micropropagation // Biosci. J. 2015. Vol. 31. P. 1312–1318. DOI: 10.14393/BJ-v31n5a2015-26601.
- 3. Pundir R.K.,Pathak A., Upadhyaya D.C., Muthusamy A., Upadhyaya C.P. Red and Blue Light-Emitting Diodes Significantly Improve Tuberization of Potato (L.) // J. Hort. Res. 2021. Vol. 29. P. 95–108. https://doi.org/10.2478/johr-2021-0010.
- 4. Jiang L., Wang Z., Jin G., Lu D., Li X. Responses of Favorita Potato Plantlets Culturedin Vitrounder Fluorescent and Light-Emitting Diode (LED) Light Sources // Am. J. Potato Res. 2019. Vol. 96. P. 396–402. https://doi.org/10.1007/s12230-019-09725-8.
- 5. Chen Li-li, Zhang Kai, Gong Xiao-chen, Wang Hao-ying, Gao You-hui, Wang Xi-quan, Zeng Zhao-hai, Hu Yue-gao. Effects of different LEDs light spectrum on the growth, leaf anatomy, and chloroplast ultrastructure of potato plantletsin vitroand minituber production after transplanting in the greenhouse // J. Integr. Agric. 2020. Vol. 19, N1. P. 108–119. https://doi.org/10.1016/S2095-3119 (19)62633-X.
- 6. Grishchenko O.V., Subbotin E.P., Gafitskaya I.V., Vereshchagina Y.V., Burkovskaya E.V., Khrolenko Y.A.,Grigorchuk V.P., Nakonechnaya O.V., Bulgakov V.P., Kulchin Y.N. Growth of micropropagatedSolanum tuberosumL. plantlets under artificial solar spectrum and different mono- and polychromatic LED lights // Hortic. Plant J. 2022. Vol. 8. N2. P. 205–214. https://doi.org/10.1016/j.hpj.2021.04.007.
- 7. Гафицкая И.В., Наконечная О.В.,Грищенко О.В., Журавлев Ю.Н., Субботин Е.П., Кульчин Ю.Н. Интенсивность света как регулятор роста растений картофеля при микроклонировании // Актуальные проблемы картофелеводства: фундаментальные и прикладные аспекты: материалы Всероссийской научно-практической конференции с международным участием, 10–13 апреля 2018 г. / отв. ред. М.В. Ефимова. Томск: Издательский дом Томского государственного университета, 2018. С. 210–211.
- 8. Kulchin Y.N.,Nakonechnaya O.V.,Gafitskaya I.V.,Grishchenko O.V.,Epifanova T.Y.,Orlovskaya I.Y.,Zhuravlev Y.N.,Subbotin E.P.PlantMorphogenesisunderDifferentLightIntensity //DefectDiffus.2018. Vol. 386. P. 201–206. https://doi.org/10.4028/www.scientific.net/ddf.386.201.
- 9. Murashige T., Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures // Physiol. Plant. 1962. Vol. 15,N3. P. 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.
- 10. Гафицкая И.В., Наконечная О.В., Журавлев Ю.Н., Субботин Е.П., Кульчин Ю.Н. Перспективы использования светодиодного излучения при культивированииin vitroрастений-регенерантов картофеля // Перспективы фитобиотехнологии для улучшения качества жизни на Севере: сб. материалов III Научно-практической конференции с международным участием и Научной школы по клеточной биотехнологии, 4–8 июня 2018 г. Якутск: Издательский дом СВФУ, 2018. С. 35–37.
- 11. Johkan M., Shoji K., Goto F., Hahida S.N., Yoshihara T. Effect of green light wave length and intensity on photomorphogenesis and photosynthesis in Lactuca sativa // Environ. Exp. Bot. 2012.Vol. 75. P. 128–133. https://doi.org/10.1016/j.envexpbot.2011.08.010.
- 12. Liu J., van Iersel M.W. Photosynthetic Physiology of Blue, Green, and Red Light: Light Intensity Effects and Underlying Mechanisms // Front. Plant Sci. 2021. Vol. 12. P. 619987. https://doi.org/10.3389/fpls.2021.619987.
- 13. Terashima I.,Fujita T., Inoue T., Chow W.S., Oguchi R. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves // Plant Cell Physiol. 2009. Vol. 50, N4. P. 684–697. https://doi.org/10.1093/pcp/pcp034.
- 14. Frantz J.M., Joly R.J., Mitchell C.A. Intracanopy lighting influences radiation capture, productivity, and leaf senescence in cowpea canopies // J. Am. Soc. Hortic. Sci. 2000. Vol. 125, N6. P. 694–701. https://doi.org/10.21273/JASHS.125.6.694.
- 15. Lu N.,Maruo T., Johkan M., Hohjo M., Tsukagoshi S., Ito Y., Ichimura T., Shinohara Y. Effects of supplemental lighting with light-emitting diodes (LEDs) on tomato yield and quality of single-truss tomato plants grown at high planting density // Environ. Control Biol. 2012. Vol. 50, N1. P. 63–74. https://doi.org/10.2525/ecb.50.63.
- 16. Smith H.L., McAusland L., Murchie E.H. Don’t ignore the green light: exploring diverse roles in plant processes // J. Exp. Bot. 2017. Vol. 68, N9. P. 2099–2110. https://doi.org/10.1093/jxb/erx098.
- 17. Kim S.J., Hahn E.J., Hoe J.W., Paek K.Y. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantletsin vitro // Sci. Hortic (Amsterdam). 2004. Vol. 101, N1/2. P. 143–151. https://doi.org/10.1016/j.scienta.2003.10.003.
- 18. Nakonechnaya O.V., Subbotin E.P.,Grishchenko O.V., Gafitskaya I.V., Orlovskaya I.Y., Kholin A.S., Goltsova D.O., Subbotina N.I., Bulgakov V.P., Kulchin Y.N.In vitropotato plantlet development under different polychromatic LED spectra and dynamic illumination // Botanica Pacifica. 2021.Vol. 10, N1. P. 69–74. DOI: 10.17581/bp.2021.10102.
- 19. Nakonechnaya O.V., Gafitskaya I.V., Burkovskaya E.V., Khrolenko Y.A., Grishchenko, O.V., Zhuravlev Y.N., Subbotin E.P., Kulchin Y.N. Effect of Light Intensity on the Morphogenesis of Stevia rebaudianaunderin vitroConditions // Russ. J. Plant Physiol. 2019. Vol. 66, N4. P. 656–663. https://doi.org/10.1134/S1021443719040095.
- 20. Cубботин Е.П., Гафицкая И.В., Наконечная О.В., Журавлев Ю.Н., Кульчин Ю.Н. Влияние искусственного солнечного света на рост и развитие растений-регенерантовSolanum tuberosum // Turczaninowia. 2018. Т. 21, № 2. С. 32–39.
- 21. Кульчин Ю.Н., Гольцова Д.О., Субботин Е.П. Регулирующее действие света на растения // Фотоника. 2020. Т. 14, № 2.С. 192–212. https://doi.org/10.22184/1993-7296.FRos.2020.14.2.192.210.