RAS PresidiumВестник Дальневосточного отделения Российской академии наук Vestnik of the Far East Branch of the Russian Academy of Sciences

  • ISSN (Print) 0869-7698
  • ISSN (Online) 3034-5308

Formation of fumarate-containing smart coating for anti-corrosion protection of magnesium alloy MA8

PII
S3034530825040059-1
DOI
10.7868/S3034530825040059
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
54-66
Abstract
This study presents a method for fabricating composite protective coatings on the MA8 magnesium alloy, combining plasma electrolytic oxidation (PEO), impregnation of the protective layer with sodium fumarate (used as an environmentally friendly corrosion inhibitor), and polycaprolactone treatment for controlled active agent release. The sample with the composite coating exhibits a low corrosion rate of 0,12 mm/year and maintains stable anticorrosion properties for 7 days. The active corrosion protection mechanism involves three stages: inhibitor release from the PEO layer pores, migration to damaged surface areas, and the adsorption on metallic magnesium or magnesium corrosion products. The polymer layer extends the duration of the inhibitor protective effect. The proposed method enables controlled biodegradation of magnesium alloys, making them promising candidates for implant materials.
Keywords
биомедицина защитные покрытия поликапролактон магический сплав электрохимия
Date of publication
21.08.2025
Year of publication
2025
Number of purchasers
0
Views
43

References

  1. 1. Liu M. et al. Effect of medium renewal mode on the degradation behavior of Mg alloys for biomedical applications during the long-term in vitro test // Corros. Sci. 2024. Vol. 229. P. 111851.
  2. 2. Wang X. et al. Structure-function integrated biodegradable Mg/polymer composites: Design, manufacturing, properties, and biomedical applications // Bioact. Mater. 2024. Vol. 39. P. 74–105.
  3. 3. Shekargoftar M. et al. Effects of plasma surface modification of Mg-2Y-2Zn-1Mn for biomedical applications // Materialia. 2024. P. 102285.
  4. 4. Luthringer B.J.C., Feyerabend F., Willumeit-Römer R. Magnesium-based implants: a mini-review // Magnes. Res. 2014. Vol. 27, № 4. P. 142–154.
  5. 5. Yang Y. et al. Research advances of magnesium and magnesium alloys worldwide in 2022 // J. Magnes. Alloy. 2023. Vol. 11, № 8. P. 2611–2654.
  6. 6. Rider P. et al. Biodegradable magnesium barrier membrane used for guided bone regeneration in dental surgery // Bioact. Mater. 2022. Vol. 14. P. 152–168.
  7. 7. Gazit T. et al. Foot surgery using resorbable magnesium screws // J. Foot Ankle Surg. 2024. https://doi.org/10.1053/j.jfas.2023.09.002
  8. 8. Tang C.-F. et al. Possibility of magnesium supplementation for supportive treatment in patients with COVID-19 // Eur. J. Pharmacol. 2020. Vol. 886. P. 173546.
  9. 9. Niranjan C.A. et al. Magnesium alloys as extremely promising alternatives for temporary orthopedic implants – A review // J. Magnes. Alloy. 2023. Vol. 11, № 8. P. 2688–2718.
  10. 10. Fairley J.L. et al. Magnesium status and magnesium therapy in cardiac surgery: A systematic review and meta-analysis focusing on arrhythmia prevention // J. Crit. Care. 2017. Vol. 42. P. 69–77.
  11. 11. Gnedenkov A.S. et al. The detailed corrosion performance of bioresorbable Mg-0.8Ca alloy in physiological solutions // J. Magnes. Alloy. 2022. Vol. 10, № 5. P. 1326–1350.
  12. 12. Noviana D. et al. The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats // J. Orthop. Transl. 2016. Vol. 5. P. 9–15.
  13. 13. Thanaa T.T. et al. Improving the surface properties of Mg based-plasma electrolytic oxidation (PEO) coatings under the fluoride electrolytes: A review // Inorg. Chem. Commun. 2024. Vol. 170. P. 113163.
  14. 14. Peñuela-Cruz C.E. et al. Synthesis of composite coatings based on Mg and Ti oxides by PEO for modulation of Mg corrosion resistance // J. Mater. Res. Technol. 2024. Vol. 33. P. 1801–1808.
  15. 15. Monfared M.M. et al. Enhancement of PEO-coated ZK60 Mg alloy: Curcumin-enriched mesoporous silica and PLA/bioglass for antibacterial properties, bioactivity and biocorrosion resistance // Surf. Coatings Technol. 2024. Vol. 493. P. 131237.
  16. 16. Chen Q. et al. Synergistic chelating agents for in-situ synthesis of Mg–Al LDH films on PEO treated Mg alloy // J. Magnes. Alloy. 2024. https://doi.org/10.1016/j.jma.2024.05.015
  17. 17. Gnedenkov A.S. et al. The effect of smart PEO-coatings impregnated with corrosion inhibitors on the protective properties of AlMg3 aluminum alloy // Materials (Basel). 2023. Vol. 16, № 6. P. 2215.
  18. 18. Гнеденков С.В., Хрисанфова О.А., Синебрюхов С.Л., Пузь А.В., Гнеденков А.С. Композиционные защитные покрытия на поверхности никелида титана // Коррозия: материалы, защита. 2007. Vol. 2. P. 20–25.
  19. 19. Gnedenkov A.S. et al. Hydroxyapatite-containing PEO-coating design for biodegradable Mg–0.8Ca alloy: Formation and corrosion behaviour // J. Magnes. Alloy. Elsevier, 2023. https://doi.org/10.1016/j.jma.2022.12.002
  20. 20. Gnedenkov A.S. et al. Smart composite antibacterial coatings with active corrosion protection of magnesium alloys // J. Magnes. Alloy. 2022. Vol. 10, № 12. P. 3589–3611.
  21. 21. Гнеденков С.В. и др. Свойства покрытий, сформированных на магниевом сплаве МА8 методом плазменного электролитического оксидирования // Вестник ДВО РАН. 2010. № 5. P. 35–46.
  22. 22. Gnedenkov A. et al. Corrosion of the welded aluminium alloy in 0.5 M NaCl solution. Part 2: Coating protection // Materials (Basel). 2018. Vol. 11, № 11. P. 2177.
  23. 23. Mashtalyar D.V. et al. New approach to formation of coatings on Mg–Mn–Ce alloy using a combination of plasma treatment and spraying of fluoropolymers // J. Magnes. Alloy. 2022. Vol. 10, № 4. P. 1033–1050.
  24. 24. Gnedenkov A.S. et al. Design of self-healing PEO-based protective layers containing in-situ grown LDH loaded with inhibitor on the MA8 magnesium alloy // J. Magnes. Alloy. 2023. Vol. 11, № 10. P. 3688–3709.
  25. 25. Maltseva A. et al. In situ surface film evolution during Mg aqueous corrosion in presence of selected carboxylates // Corros. Sci. 2020. Vol. 171. P. 108484.
  26. 26. Daavari M. et al. In vitro corrosion-assisted cracking of AZ31B Mg alloy with a hybrid PEO+MWCNTs/PCL coating // Surfaces and Interfaces. 2023. Vol. 42. P. 103446.
  27. 27. Yu X., Zhang M., Chen H. Superhydrophobic anticorrosion coating with active protection effect: Graphene oxide-loaded inorganic/organic corrosion inhibitor for magnesium alloys // Surf. Coatings Technol. 2024. Vol. 480. P. 130586.
  28. 28. Ahmed M.A., Amin S., Mohamed A.A. Current and emerging trends of inorganic, organic and eco-friendly corrosion inhibitors // RSC Adv. 2024. Vol. 14, № 43. P. 31877–31920.
  29. 29. Huang D. et al. Inhibition effect of inorganic and organic inhibitors on the corrosion of Mg–10Gd– 3Y–0.5Zr alloy in an ethylene glycol solution at ambient and elevated temperatures // Electrochim. Acta. 2011. Vol. 56, № 27. P. 10166–10178.
  30. 30. Yang X. et al. Formation of protective conversion coating on Mg surface by inorganic inhibitor // Corros. Sci. 2023. Vol. 215. P. 111044.
  31. 31. Jiang H. et al. Effects of interlayer-modified layered double hydroxides with organic corrosion inhibiting ions on the properties of cement-based materials and reinforcement corrosion in chloride environment // Cem. Concr. Compos. 2024. Vol. 154. P. 105793.
  32. 32. Molina E.F.H. et al. Corrosion protection of AS21 alloy by coatings containing Mg/Al hydrotalcites impregnated with the organic corrosion inhibitor 2-mercaptobenzimidazole // Int. J. Electrochem. Sci. 2020. Vol. 15, № 10. P. 10028–10039.
  33. 33. Yang J. et al. Experimental and quantum chemical studies of carboxylates as corrosion inhibitors for AM50 alloy in pH neutral NaCl solution // J. Magnes. Alloy. 2022. Vol. 10, № 2. P. 555–568.
  34. 34. Lamaka S.V. et al. Comprehensive screening of Mg corrosion inhibitors // Corros. Sci. 2017. Vol. 128. P. 224–240.
  35. 35. Gnedenkov A.S. et al. Carboxylates as green corrosion inhibitors of magnesium alloy for biomedical application // J. Magnes. Alloy. 2024. Vol. 12, № 7. P. 2909–2936.
  36. 36. Ouyang Y. et al. A self-healing coating based on facile pH-responsive nanocontainers for corrosion protection of magnesium alloy // J. Magnes. Alloy. 2022. Vol. 10, № 3. P. 836–849.
  37. 37. Guo X. et al. Effects of benzotriazole on anodized film formed on AZ31B magnesium alloy in environmental-friendly electrolyte // J. Alloys Compd. 2009. Vol. 482, № 1–2. P. 487–497.
  38. 38. Yu X. et al. Polydopamine-coated zeolitic imidazolate framework for enhanced anti-corrosion and self-healing capabilities of epoxy coating on magnesium alloy // Appl. Surf. Sci. 2025. Vol. 680. P. 161332.
  39. 39. Qiang Y. et al. Polydopamine encapsulates Uio66 loaded with 2-mercaptobenzimidazole composite as intelligent and controllable nanoreservoirs to establish superior active/passive anticorrosion coating // Chem. Eng. J. 2025. Vol. 503. P. 158559.
  40. 40. Shamsi M., Sedighi M., Bagheri A. Surface modification of biodegradable Mg/HA composite by electrospinning of PCL/HA fibers coating: Mechanical properties, corrosion, and biocompatibility // Trans. Nonferrous Met. Soc. China. 2024. Vol. 34, № 5. P. 1470–1486.
  41. 41. Liu K.-P. et al. Biocompatibility and corrosion resistance of drug coatings with different polymers for magnesium alloy cardiovascular stents // Colloids Surfaces B Biointerfaces. 2025. Vol. 245. P. 114202.
  42. 42. Gnedenkov S.V. et al. Composite hydroxyapatite–PTFE coatings on Mg–Mn–Ce alloy for resorbable implant applications via a plasma electrolytic oxidation-based route // J. Taiwan Inst. Chem. Eng. 2014. Vol. 45, № 6. P. 3104–3109.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library