- Код статьи
- S3034530825040059-1
- DOI
- 10.7868/S3034530825040059
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том / Номер выпуска 4
- Страницы
- 54-66
- Аннотация
- В работе предложен способ формирования композиционных защитных покрытий на магниевом сплаве МА8, сочетающий плазменное электролитическое оксидирование (ПЭО), импрегнацию защитного слоя фумаратом натрия, используемым в качестве экологичного ингибитора коррозии, и обработку поликапролактоном для контролируемого высвобождения активного вещества. Образец с композиционным покрытием демонстрирует низкую скорость коррозии (0,12 мм/год) и сохраняет стабильность антикоррозионных свойств в течение 7 сут. Механизм активной защиты материала от коррозии включает три этапа: высвобождение ингибитора из пор ПЭО-слоя, миграцию его к поврежденным участкам поверхности и адсорбцию на металлическом магнии или продуктах коррозии магния. Полимерный слой увеличивает продолжительность защитного действия ингибитора. Предложенный способ обеспечивает контролируемую биодеградацию магических сплавов, перспективных для использования в качестве имплантационного материала.
- Ключевые слова
- биомедицина защитные покрытия поликапролактон магический сплав электрохимия
- Дата публикации
- 21.08.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 38
Библиография
- 1. Liu M. et al. Effect of medium renewal mode on the degradation behavior of Mg alloys for biomedical applications during the long-term in vitro test // Corros. Sci. 2024. Vol. 229. P. 111851.
- 2. Wang X. et al. Structure-function integrated biodegradable Mg/polymer composites: Design, manufacturing, properties, and biomedical applications // Bioact. Mater. 2024. Vol. 39. P. 74–105.
- 3. Shekargoftar M. et al. Effects of plasma surface modification of Mg-2Y-2Zn-1Mn for biomedical applications // Materialia. 2024. P. 102285.
- 4. Luthringer B.J.C., Feyerabend F., Willumeit-Römer R. Magnesium-based implants: a mini-review // Magnes. Res. 2014. Vol. 27, № 4. P. 142–154.
- 5. Yang Y. et al. Research advances of magnesium and magnesium alloys worldwide in 2022 // J. Magnes. Alloy. 2023. Vol. 11, № 8. P. 2611–2654.
- 6. Rider P. et al. Biodegradable magnesium barrier membrane used for guided bone regeneration in dental surgery // Bioact. Mater. 2022. Vol. 14. P. 152–168.
- 7. Gazit T. et al. Foot surgery using resorbable magnesium screws // J. Foot Ankle Surg. 2024. https://doi.org/10.1053/j.jfas.2023.09.002
- 8. Tang C.-F. et al. Possibility of magnesium supplementation for supportive treatment in patients with COVID-19 // Eur. J. Pharmacol. 2020. Vol. 886. P. 173546.
- 9. Niranjan C.A. et al. Magnesium alloys as extremely promising alternatives for temporary orthopedic implants – A review // J. Magnes. Alloy. 2023. Vol. 11, № 8. P. 2688–2718.
- 10. Fairley J.L. et al. Magnesium status and magnesium therapy in cardiac surgery: A systematic review and meta-analysis focusing on arrhythmia prevention // J. Crit. Care. 2017. Vol. 42. P. 69–77.
- 11. Gnedenkov A.S. et al. The detailed corrosion performance of bioresorbable Mg-0.8Ca alloy in physiological solutions // J. Magnes. Alloy. 2022. Vol. 10, № 5. P. 1326–1350.
- 12. Noviana D. et al. The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats // J. Orthop. Transl. 2016. Vol. 5. P. 9–15.
- 13. Thanaa T.T. et al. Improving the surface properties of Mg based-plasma electrolytic oxidation (PEO) coatings under the fluoride electrolytes: A review // Inorg. Chem. Commun. 2024. Vol. 170. P. 113163.
- 14. Peñuela-Cruz C.E. et al. Synthesis of composite coatings based on Mg and Ti oxides by PEO for modulation of Mg corrosion resistance // J. Mater. Res. Technol. 2024. Vol. 33. P. 1801–1808.
- 15. Monfared M.M. et al. Enhancement of PEO-coated ZK60 Mg alloy: Curcumin-enriched mesoporous silica and PLA/bioglass for antibacterial properties, bioactivity and biocorrosion resistance // Surf. Coatings Technol. 2024. Vol. 493. P. 131237.
- 16. Chen Q. et al. Synergistic chelating agents for in-situ synthesis of Mg–Al LDH films on PEO treated Mg alloy // J. Magnes. Alloy. 2024. https://doi.org/10.1016/j.jma.2024.05.015
- 17. Gnedenkov A.S. et al. The effect of smart PEO-coatings impregnated with corrosion inhibitors on the protective properties of AlMg3 aluminum alloy // Materials (Basel). 2023. Vol. 16, № 6. P. 2215.
- 18. Гнеденков С.В., Хрисанфова О.А., Синебрюхов С.Л., Пузь А.В., Гнеденков А.С. Композиционные защитные покрытия на поверхности никелида титана // Коррозия: материалы, защита. 2007. Vol. 2. P. 20–25.
- 19. Gnedenkov A.S. et al. Hydroxyapatite-containing PEO-coating design for biodegradable Mg–0.8Ca alloy: Formation and corrosion behaviour // J. Magnes. Alloy. Elsevier, 2023. https://doi.org/10.1016/j.jma.2022.12.002
- 20. Gnedenkov A.S. et al. Smart composite antibacterial coatings with active corrosion protection of magnesium alloys // J. Magnes. Alloy. 2022. Vol. 10, № 12. P. 3589–3611.
- 21. Гнеденков С.В. и др. Свойства покрытий, сформированных на магниевом сплаве МА8 методом плазменного электролитического оксидирования // Вестник ДВО РАН. 2010. № 5. P. 35–46.
- 22. Gnedenkov A. et al. Corrosion of the welded aluminium alloy in 0.5 M NaCl solution. Part 2: Coating protection // Materials (Basel). 2018. Vol. 11, № 11. P. 2177.
- 23. Mashtalyar D.V. et al. New approach to formation of coatings on Mg–Mn–Ce alloy using a combination of plasma treatment and spraying of fluoropolymers // J. Magnes. Alloy. 2022. Vol. 10, № 4. P. 1033–1050.
- 24. Gnedenkov A.S. et al. Design of self-healing PEO-based protective layers containing in-situ grown LDH loaded with inhibitor on the MA8 magnesium alloy // J. Magnes. Alloy. 2023. Vol. 11, № 10. P. 3688–3709.
- 25. Maltseva A. et al. In situ surface film evolution during Mg aqueous corrosion in presence of selected carboxylates // Corros. Sci. 2020. Vol. 171. P. 108484.
- 26. Daavari M. et al. In vitro corrosion-assisted cracking of AZ31B Mg alloy with a hybrid PEO+MWCNTs/PCL coating // Surfaces and Interfaces. 2023. Vol. 42. P. 103446.
- 27. Yu X., Zhang M., Chen H. Superhydrophobic anticorrosion coating with active protection effect: Graphene oxide-loaded inorganic/organic corrosion inhibitor for magnesium alloys // Surf. Coatings Technol. 2024. Vol. 480. P. 130586.
- 28. Ahmed M.A., Amin S., Mohamed A.A. Current and emerging trends of inorganic, organic and eco-friendly corrosion inhibitors // RSC Adv. 2024. Vol. 14, № 43. P. 31877–31920.
- 29. Huang D. et al. Inhibition effect of inorganic and organic inhibitors on the corrosion of Mg–10Gd– 3Y–0.5Zr alloy in an ethylene glycol solution at ambient and elevated temperatures // Electrochim. Acta. 2011. Vol. 56, № 27. P. 10166–10178.
- 30. Yang X. et al. Formation of protective conversion coating on Mg surface by inorganic inhibitor // Corros. Sci. 2023. Vol. 215. P. 111044.
- 31. Jiang H. et al. Effects of interlayer-modified layered double hydroxides with organic corrosion inhibiting ions on the properties of cement-based materials and reinforcement corrosion in chloride environment // Cem. Concr. Compos. 2024. Vol. 154. P. 105793.
- 32. Molina E.F.H. et al. Corrosion protection of AS21 alloy by coatings containing Mg/Al hydrotalcites impregnated with the organic corrosion inhibitor 2-mercaptobenzimidazole // Int. J. Electrochem. Sci. 2020. Vol. 15, № 10. P. 10028–10039.
- 33. Yang J. et al. Experimental and quantum chemical studies of carboxylates as corrosion inhibitors for AM50 alloy in pH neutral NaCl solution // J. Magnes. Alloy. 2022. Vol. 10, № 2. P. 555–568.
- 34. Lamaka S.V. et al. Comprehensive screening of Mg corrosion inhibitors // Corros. Sci. 2017. Vol. 128. P. 224–240.
- 35. Gnedenkov A.S. et al. Carboxylates as green corrosion inhibitors of magnesium alloy for biomedical application // J. Magnes. Alloy. 2024. Vol. 12, № 7. P. 2909–2936.
- 36. Ouyang Y. et al. A self-healing coating based on facile pH-responsive nanocontainers for corrosion protection of magnesium alloy // J. Magnes. Alloy. 2022. Vol. 10, № 3. P. 836–849.
- 37. Guo X. et al. Effects of benzotriazole on anodized film formed on AZ31B magnesium alloy in environmental-friendly electrolyte // J. Alloys Compd. 2009. Vol. 482, № 1–2. P. 487–497.
- 38. Yu X. et al. Polydopamine-coated zeolitic imidazolate framework for enhanced anti-corrosion and self-healing capabilities of epoxy coating on magnesium alloy // Appl. Surf. Sci. 2025. Vol. 680. P. 161332.
- 39. Qiang Y. et al. Polydopamine encapsulates Uio66 loaded with 2-mercaptobenzimidazole composite as intelligent and controllable nanoreservoirs to establish superior active/passive anticorrosion coating // Chem. Eng. J. 2025. Vol. 503. P. 158559.
- 40. Shamsi M., Sedighi M., Bagheri A. Surface modification of biodegradable Mg/HA composite by electrospinning of PCL/HA fibers coating: Mechanical properties, corrosion, and biocompatibility // Trans. Nonferrous Met. Soc. China. 2024. Vol. 34, № 5. P. 1470–1486.
- 41. Liu K.-P. et al. Biocompatibility and corrosion resistance of drug coatings with different polymers for magnesium alloy cardiovascular stents // Colloids Surfaces B Biointerfaces. 2025. Vol. 245. P. 114202.
- 42. Gnedenkov S.V. et al. Composite hydroxyapatite–PTFE coatings on Mg–Mn–Ce alloy for resorbable implant applications via a plasma electrolytic oxidation-based route // J. Taiwan Inst. Chem. Eng. 2014. Vol. 45, № 6. P. 3104–3109.