Президиум РАНВестник Дальневосточного отделения Российской академии наук Vestnik of the Far East Branch of the Russian Academy of Sciences

  • ISSN (Print) 0869-7698
  • ISSN (Online) 3034-5308

Композитные материалы на основе хитозана – сорбенты для очистки жидких радиоактивных отходов

Код статьи
10.31857/S0869769824060108-1
DOI
10.31857/S0869769824060108
Тип публикации
Обзор
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том / Номер выпуска 6
Страницы
144-158
Аннотация
В обзоре рассмотрены подходы к получению хитозансодержащих композитов, предназначенных для удаления радионуклидов из водных растворов. Описаны методы получения сорбентов на основе хитозана для удаления металлов – основных источников радиоактивных загрязнений (U, Sr, Cs). Эффективность использования биополимера для этих целей значительно повышается в результате физической или химической модификации, а также внесения наполнителей. Среди рассмотренных сорбентов выделены наиболее дешевые и эффективные для сорбции Sr и Cs материалы и приведены упрощенные схемы для их получения. Основная цель данного обзора – предоставить актуальную информацию о наиболее важных свойствах композитов в сочетании с неорганическими наполнителями и показать их преимущества в качестве сорбентов при очистке загрязненных водных растворов.
Ключевые слова
хитозан хитозановые композиты сорбция металлы радионуклиды очистка воды
Дата публикации
15.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
10

Библиография

  1. 1. Ahmed S., Ikram S. Chitosan: derivatives, composites and applications. John Wiley & Sons, 2017. 519 p. ISBN 9781119364801.
  2. 2. Wiącek A.E. (ed.). Chitosan, Chitosan Derivatives and Their Applications. Multidisciplinary Digital Publishing Institute (MDPI), 2024. 376 p. DOI: 10.3390/books978-3-7258-0253-1.
  3. 3. Guibal E. Interactions of metal ions with chitosan-based sorbents: a review // Separation and Purification Technology. 2004. Vol. 38, N 1. P. 43–74. DOI: 10.1016/j.seppur.2003.10.004.
  4. 4. Crini G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment // Progress in Polymer Science. 2005. Vol. 30, N 1. P. 38–70. DOI: 10.1016/j.progpolymsci.2004.11.002.
  5. 5. Gerente C., Lee V.K., Cloirec P.L., McKay G. Application of Chitosan for the Removal of Metals From Wastewaters by Adsorption – Mechanisms and Models Review // Critical Reviews in Environmental Science and Technology. 2007. Vol. 37, N 1. P. 41–127. https://doi.org/10.1080/10643380600729089.
  6. 6. Bhatnagar A., Sillanpää M. Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater – A short review // Advances in Colloid and Interface Science. 2009. Vol. 152, N 1. P. 26–38. DOI: 10.1016/j.cis.2009.09.003.
  7. 7. Elwakeel K.Z. Environmental application of chitosan resins for the treatment of water and wastewater: A Review // Journal of Dispersion Science and Technology. 2010. Vol. 31, N 3. P. 273–288. https://doi.org/10.1080/01932690903167178.
  8. 8. Suyambulingam I., Gangadhar L., Sana S.S., Divakaran D., Siengchin S., Kurup L.A., Iyyadurai J., Albert Bernad Noble K.E. Chitosan biopolymer and its nanocomposites: emerging material as adsorbent in wastewater treatment // Advances in Materials Science and Engineering. 2023. Vol. 2023, N 1. 9387016. DOI: 10.1155/2023/9387016.
  9. 9. Gomez-Maldonado D., Vega Erramuspe I.B., Peresin M.S. Natural polymers as alternative adsorbents and treatment agents for water remediation // BioResources. 2019. Vol. 14, N 4. P. 10093–10160.
  10. 10. Wang J., Chen C. Chitosan-based biosorbents: Modification and application for biosorption of heavy metals and radionuclides // Bioresource Technology. 2014. Vol. 160. P. 129–141. https://doi.org/10.1016/j.biortech.2013.12.110.
  11. 11. Zhang L., Zeng Y., Cheng Z. Removal of heavy metal ions using chitosan and modified chitosan: A review // Journal of Molecular Liquids. 2016. Vol. 214. P. 175–191. DOI: 10.1016/j.molliq.2015.12.013.
  12. 12. Wan Ngah W.S., Teong L.C., Hanafiah M.A.K.M. Adsorption of dyes and heavy metal ions by chitosan composites: A review // Carbohydrate Polymers. 2011. Vol. 83, N 4. P. 1446–1456. DOI: 10.1016/j.carbpol.2010.11.004.
  13. 13. Crini G., Badot P.M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature // Progress in Polymer Science. 2008. Vol. 33, N 4. P. 399–447. DOI: 10.1016/j.progpolymsci.2007.11.001.
  14. 14. Varma A.J., Deshpande S.V., Kennedy J.F. Metal complexation by chitosan and its derivatives: a review // Carbohydrate Polymers. 2004. Vol. 55, N 1. P. 77–93. DOI: 10.1016/j.carbpol.2003.08.005.
  15. 15. Kumar S., Ye F., Dobretsov S., Dutta J. Chitosan nanocomposite coatings for food, paints, and water treatment applications // Applied Sciences. 2019. Vol. 9, N 12. P. 2409. Doi: 10.3390/app9122409.
  16. 16. Sarkar S., Guibal E., Quignard F., SenGupta A.K. Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications // J. Nanopart. Res. 2012. Vol. 14, N 2. P. 715. DOI: 10.1007/s11051-011-0715-2.
  17. 17. Zhang Y., Wu B., Xu H., Liu H., Wang M., He Y., Pan B. Nanomaterials-enabled water and wastewater treatment // NanoImpact. 2016. Vol. 3/4. P. 22–39. DOI: 10.1016/j.impact.2016.09.004
  18. 18. Shukla S.K., Mishra A.K., Arotiba O.A., Mamba B.B. Chitosan-based nanomaterials: A state-of-the-art review // International Journal of Biological Macromolecules. 2013. Vol. 59. P. 46–58. DOI: 10.1016/j.ijbiomac.2013.04.043.
  19. 19. Reddy D.H.K., Lee S.-M. Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions // Advances in Colloid and Interface Science. 2013. Vol. 201/202. P. 68–93. DOI: 10.1016/j.cis.2013.10.002.
  20. 20. Gómez-Pastora J., Bringas E., Ortiz I. Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications // Chemical Engineering Journal. 2014. Vol. 256. P. 187–204. DOI: 10.1016/j.cej.2014.06.119.
  21. 21. Muzzarelli R.A.A. Potential of chitin/chitosan-bearing materials for uranium recovery: An interdisciplinary review // Carbohydrate Polymers. 2011. Vol. 84, N 1. P. 54–63. DOI: 10.1016/j.carbpol.2010.12.025.
  22. 22. Hasan S., Ghosh T.K., Prelas M.A., Viswanath D.S., Boddu V.M. Adsorption of uranium on a novel bioadsorbent-chitosan-coated perlite // Nuclear technology. 2007. Vol. 159, N 1. P. 59–71. https://doi.org/10.13182/NT07-A3856.
  23. 23. Zhou L., Shang C., Liu Z., Huang G., Adesina A.A. Selective adsorption of uranium(VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins // Journal of Colloid and Interface Science. 2012. Vol. 366, N 1. P. 165–172. DOI: 10.1016/j.jcis.2011.09.069.
  24. 24. Zhou L., Jia Y., Peng J., Liu Z., Al-Zaini E. Competitive adsorption of uranium(VI) and thorium(IV) ions from aqueous solution using triphosphate-crosslinked magnetic chitosan resins // J. Radioanal. Nucl. Chem. 2014. Vol. 302, N 1. P. 331–340. DOI: 10.1007/s10967-014-3125-y.
  25. 25. Zhou L., Li Z., Zeng K., Chen Q., Wang Y., Liu Z., Adesina A.A. Immobilization of in-situ formed Ni(OH)2 nanoparticles in chitosan beads for efficient removal of U(VI) from aqueous solutions // J. Radioanal. Nucl. Chem. 2017. Vol. 314, N 1. P. 467–476. DOI: 10.1007/s10967-017-5407-7.
  26. 26. Wang J., Ma R., Li L., Gu P., Wang X. Chitosan modified molybdenum disulfide composites as adsorbents for the simultaneous removal of U(VI), Eu(III), and Cr(VI) from aqueous solutions // Cellulose. 2020. Vol. 27, N 3. P. 1635–1648. DOI: 10.1007/s10570-019-02885-0.
  27. 27. Ding L., Tao C., Zhang S., Zheng B., Dang Z., Zhang L. One-step synthesis of phospho-rich, silica-enhanced chitosan aerogel for the efficient adsorption of uranium(VI) // International Journal of Biological Macromolecules. 2024. Vol. 259. P. 129101. DOI: 10.1016/j.ijbiomac.2023.129101.
  28. 28. Ao X., Zhou L., Jin J., Liu Y., Ouyang J., Liu Z., Shehzad H. Macroporous and ultralight polyethyleneimine-grafted chitosan/nano-TiO2 foam as a novel adsorbent with antibacterial activity for the efficient U(VI) removal // International Journal of Biological Macromolecules. 2023. Vol. 253. P. 126966. DOI: 10.1016/j.ijbiomac.2023.126966.
  29. 29. Majeed M.D., Roushani M. Synthesis and characterization of novel chitosan/graphene oxide/poly (vinyl alcohol) aerogel nanocomposite for high efficiency uranium(VI) removal from wastewaters // J. Clust. Sci. 2024. Vol. 35, N 3. P. 903–914. DOI: 10.1007/s10876-023-02523-7.
  30. 30. Xia M., Gao R., Xu G., You Y., Li X., Dou J., Fan F. Fabrication and investigation of novel monochloroacetic acid fortified, tripolyphosphate-crosslinked chitosan for highly efficient adsorption of uranyl ions from radioactive effluents // Journal of Hazardous Materials. 2022. Vol. 431. P. 128461. DOI: 10.1016/j.jhazmat.2022.128461.
  31. 31. Li Y., Dai Y., Tao Q., Gao Z., Xu L. Ultrahigh efficient and selective adsorption of U(VI) with amino acids-modified magnetic chitosan biosorbents: Performance and mechanism // International Journal of Biological Macromolecules. 2022. Vol. 214. P. 54–66. DOI: 10.1016/j.ijbiomac.2022.06.061.
  32. 32. Hizal J., Kanmaz N., Yılmazoğlu M. Evaluation of humic acid embedded Chitosan/PVA composite performance in the removal of uranyl ions // Materials Chemistry and Physics. 2023. Vol. 299. P. 127483. DOI: 10.1016/j.matchemphys.2023.127483.
  33. 33. Zhu R., Zhang C., Bi C., Zhu L., Wang C., Wang Y., Liu L., Ma F., Dong H. Highly efficient and antibacterial uranium adsorbents derived from disubstituted amidoxime functionalized chitosan // Cellulose. 2023. Vol. 30, N 3. P. 1669–1684. DOI: 10.1007/s10570-022-04996-7.
  34. 34. Abukhadra M.R., Eid M.H., El-Meligy M.A., Sharaf M., Soliman A.T. Insight into chitosan/mesoporous silica nanocomposites as eco-friendly adsorbent for enhanced retention of U(VI) and Sr(II) from aqueous solutions and real water // International Journal of Biological Macromolecules. 2021. Vol. 173. P. 435–444. DOI: 10.1016/j.ijbiomac.2021.01.136.
  35. 35. Kamble P., Sinharoy P., Pahan S., Neogy S., Ananthanarayanan A., Banerjee D., Sugilal G. Synthesis and characterization of chitosan-sodium titanate nanocomposite beads for separation of radionuclides from aqueous radioactive waste // J. Radioanal. Nucl. Chem. 2021. Vol. 327, N 2. P. 691–698. DOI: 10.1007/s10967-020-07548-0.
  36. 36. Dakroury G.A., El-Shazly E.A.A., Hassan H.S. Preparation and characterization of ZnO/Chitosan nanocomposite for Cs(I) and Sr(II) sorption from aqueous solutions // J. Radioanal. Nucl. Chem. 2021. Vol. 330, N 1. P. 159–174. DOI: 10.1007/s10967-021-07935-1.
  37. 37. Egorin A., Tokar E., Matskevich A., Ivanov N., Tkachenko I., Sokolnitskaya T., Zemskova L. Composite magnetic sorbents based on iron oxides in different polymer matrices: comparison and application for removal of strontium // Biomimetics. 2020. Vol. 5, N 2. P. 22. DOI: 10.3390/biomimetics5020022.
  38. 38. Zemskova L., Egorin A., Tokar E., Ivanov V., Bratskaya S. New chitosan/iron oxide composites: fabrication and application for removal of Sr2+ radionuclide from aqueous solutions // Biomimetics. 2018. Vol. 3, N 4. P. 39. DOI: 10.3390/biomimetics3040039.
  39. 39. Kosyakov V.N., Veleshko I.E., Yakovlev N.G., Gorovoi L.F. Preparation, properties, and application of modified mikoton sorbents // Radiochemistry. 2004. Vol. 46, N 4. P. 385–390. DOI: 10.1023/B:RACH.0000039117.10307.d0.
  40. 40. Vincent T., Vincent C., Barré Y., Guari Y., Le Saout G., Guibal E. Immobilization of metal hexacyanoferrates in chitin beads for cesium sorption: synthesis and characterization // J. Mater. Chem. A. 2014. Vol. 2, N 26. P. 10007–10021. DOI: 10.1039/C4TA01128G.
  41. 41. Egorin A., Tokar E., Zemskova L. Chitosan-ferrocyanide sorbent for Cs-137 removal from mineralized alkaline media // Radiochimica Acta. 2016. Vol. 104, N 9, P. 657–661. DOI: 10.1515/ract-2015–2536.
  42. 42. Zemskova L., Egorin A., Tokar E., Ivanov V. Chitosan-based biosorbents: immobilization of metal hexacyanoferrates and application for removal of cesium radionuclide from aqueous solutions // J. Sol-Gel Sci. Technol. 2019. Vol. 92, N 2. P. 459–466. DOI: 10.1007/s10971-019-05019-x.
  43. 43. Fujisaki T., Kashima K., Hagiri M., Imai M. Isothermal adsorption behavior of cesium ions in a novel chitosan – prussian blue – based membrane // Chem Eng & Technol. 2019. Vol. 42, N 4. P. 910–917. DOI: 10.1002/ceat.201800603.
  44. 44. Bratskaya S., Privar Y., Slobodyuk A., Shashura D., Marinin D., Mironenko A., Zheleznov V., Pestov A. Cryogels of carboxyalkylchitosans as a universal platform for the fabrication of composite materials // Carbohydrate Polymers. 2019. Vol. 209. P. 1–9. DOI: 10.1016/j.carbpol.2018.12.094.
  45. 45. Vinogradov I.I., Andreev E.V., Yushin N.S., Sokhatskii A.S., Altynov V.A., Gustova M.V., Vershinina T.N., Zin’kovskaya I., Nechaev A.N., Apel’ P.Y. A hybrid membrane for the simultaneous selective sorption of cesium in the ionic and colloid forms // Theor. Found. Chem. Eng. 2023. Vol. 57, N 4. P. 549–562. DOI: 10.1134/S0040579523040498.
  46. 46. Tokar’ E., Zemskova L., Tutov M., Tananaev I., Dovhyi I., Egorin A. Development and practical evaluation of the scheme for 137Cs concentrating from seawater using chitosan and mixed ferrocyanides of Zn-K and Ni-K // J. Radioanal. Nucl. Chem. 2020. Vol. 325, N 2. P. 567–575. DOI: 10.1007/s10967-020-07248-9.
  47. 47. Zemskova L., Tokar E., Shlyk D., Egorin A. Sorbents based on Ni(OH)2/chitosan, immobilization of metal hexacyanoferrates, and application for removal of radionuclide Cs from aqueous solutions // J. Sol-Gel Sci. Technol. 2022. Vol. 108, N 2. P. 250–255. DOI: 10.1007/s10971-022-05861-6.
  48. 48. Roh H., Kim Y., Kim Y.K., Harbottle D., Lee J.W. Amino-functionalized magnetic chitosan beads to enhance immobilization of potassium copper hexacyanoferrate for selective Cs+ removal and facile recovery // RSC Adv. 2019. Vol. 9, N 2. P. 1106–1114. DOI: 10.1039/C8RA09386E.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека