RAS PresidiumВестник Дальневосточного отделения Российской академии наук Vestnik of the Far East Branch of the Russian Academy of Sciences

  • ISSN (Print) 0869-7698
  • ISSN (Online) 3034-5308

Plants low-frequency acoustic response to abiotic stress

PII
10.31857/S0869769824060029-1
DOI
10.31857/S0869769824060029
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 6
Pages
18-27
Abstract
In the paper acoustic microvibrations in the range from 0.1 to 27 Hz that occur in the leaves and root system of the Chinese rose plant in response to light irradiation, as well as damage to the leaves in the form of applying the irritating ointment “Linkus” to them. It has been shown that when a plant is irradiated with light, microvibrations arise in the leaf with a frequency of 5.77198 Hz, which presumably can be associated with the process of photosynthesis. When exposed to light, microvibrations were also recorded in the root system with frequencies of 23.61 and 16.35 Hz. Applying irritating ointment “Linkus” to four spatially spaced rose leaves also led to the appearance of characteristic microvibrations in the root system, with each leaf corresponding to its own vibration frequency, which apparently indicates that the rhizome receives information about each leaf and thus, using low-frequency microvibrations, the plant can interact with the external environment.
Keywords
микровибрации корневая система звуковые колебания листья растений
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Son J.S., Jang S., Mathevon N., Ryu C.M. Is plant acoustic communication fact or fiction? // New Phytologist. 2024. Vol. 242, N 5. P. 1876–1880.
  2. 2. Appel H.M., Cocroft R.B. Plants respond to leaf vibrations caused by insect herbivore chewing // Oecologia. 2014. Vol. 175, N 4. P. 1257–1266.
  3. 3. Pinto C.F. et al. Chemical responses of Nicotiana tabacum (Solanaceae) induced by vibrational signals of a generalist herbivore // Journal of Chemical Ecology. 2019. Vol. 45. P. 708–714.
  4. 4. De Luca P.A., Vallejo-Marín M. What’s the ‘buzz’about? The ecology and evolutionary significance of buzz-pollination // Current Opinion in Plant Biology. 2013. Т. 16, N 4. P. 429–435.
  5. 5. Veits M. et al. Flowers respond to pollinator sound within minutes by increasing nectar sugar concentration // Ecology Letters. 2019. Vol. 22, N 9. P. 1483–1492.
  6. 6. Schöner M.G. et al. Bats are acoustically attracted to mutualistic carnivorous plants // Current Biology. 2015. Vol. 25, N 14. P. 1911–1916.
  7. 7. Rodrigo-Moreno Ana et al. Root phonotropism: early signalling events following sound perception in Arabidopsis roots // Plant Science. 2017. Vol. 264. P. 9–15.
  8. 8. Gagliano Monica, Stefano Mancuso, Daniel Robert. Towards understanding plant bioacoustics // Trends in Plant Science. 2012. Vol. 17, N 6. P. 323–325.
  9. 9. Gagliano Monica et al. Tuned in: plant roots use sound to locate water // Oecologia. 2017. Vol. 184, N 1. P. 151–160.
  10. 10. Khait Itzhak et al. Sound perception in plants // Seminars in cell & developmental biology. Academic Press, 2019. Vol. 92.
  11. 11. Kafash Zohreh Haghighi et al. Traffic noise induces oxidative stress and phytohormone imbalance in two urban plant species // Basic and Applied Ecology. 2022. Vol. 60. P. 1–12.
  12. 12. Jiang Shiren et al. Effects of sonic waves at different frequencies on propagation of Chlorella pyrenoidosa // Agricultural Science and Technology. 2012. Vol. 13, N 10. P. 2197.
  13. 13. Cai Weiming, et al. Audible sound treatment of the microalgae Picochlorum oklahomensis for enhancing biomass productivity // Bioresource Technology. 2016. Vol. 202. P. 226–230.
  14. 14. Christwardana M., Hadiyanto H. The effects of audible sound for enhancing the growth rate of microalgae Haematococcus pluvialis in vegetative stage // HAYATI Journal of Biosciences. 2017. Vol. 24, N 3. P. 149–155.
  15. 15. Hassanien Reda HE et al. Advances in effects of sound waves on plants // Journal of Integrative Agriculture. 2014. Vol. 13, N 2 P. 335–348.
  16. 16. Qi Lirong et al. Influence of sound wave stimulation on the growth of strawberry in sunlight greenhouse // Computer and Computing Technologies in Agriculture III: Third IFIP TC 12 International Conference, CCTA 2009, Beijing, China, October 14–17, 2009, Revised Selected Papers 3. Berlin Heidelberg: Springer, 2010.
  17. 17. Choi B. et al. Positive regulatory role of sound vibration treatment in Arabidopsis thaliana against Botrytis cinerea infection // Scientific Reports. 2017. Vol. 7, N 1. P. 2527.
  18. 18. Jung J. et al. Sound vibration-triggered epigenetic modulation induces plant root immunity against Ralstonia solanacearum // Frontiers in Microbiology. 2020. Vol. 11. P. 1978.
  19. 19. Gagliano M. et al. Out of sight but not out of mind: alternative means of communication in plants // PloS One. 2012. Vol. 7, N. 5. P. e37382.
  20. 20. Khait I. et al. Sounds emitted by plants under stress are airborne and informative // Cell. 2023. Vol. 186, N 7. P. 1328–1336. e10.
  21. 21. Hamant O., Haswell E.S. Life behind the wall: sensing mechanical cues in plants //BMC Biology. 2017. Vol. 15. P. 1–9.
  22. 22. Патент на полезную модель № 202454 Российская Федерация, МПК51 А61В 5/0476(2020.08) Регистратор спектра микровибраций головного мозга / Шабанов Г.А., Рыбченко А.А., Лебедев Ю.А., Зубков И.А.; НИЦ «Арктика» ДВО РАН (RU), заявка № 2020125873; приоритет 04.08.2020; опубл. 18.02.2021. Бюл. № 5.
  23. 23. Шабанов Г.А., Рыбченко А.А., Лебедев Ю.А., Луговая Е.А. Регистратор спектра акустического поля головного мозга человека // Биомедицинская радиоэлектроника. 2021. Т. 24, № 3. С. 28–36. DOI: 10.18127/j15604136-202103-03.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library