RAS PresidiumВестник Дальневосточного отделения Российской академии наук Vestnik of the Far East Branch of the Russian Academy of Sciences

  • ISSN (Print) 0869-7698
  • ISSN (Online) 3034-5308

Greenhouse gases balance and climate change: role of permafrost degradation in the Arctic

PII
10.31857/S0869769824040015-1
DOI
10.31857/S0869769824040015
Publication type
Review
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
5-43
Abstract
One of the most prominent problems of modern geochemistry and climatology is the understanding of the patterns of migration of the main greenhouse gases, carbon dioxide (CO2) and methane (CH4). The purpose of this work is a brief review of the widely accepted concept of the dominant role of the anthropogenic factor in climate change, which is considered in the paleo-context of changes in natural climate cycling over the past hundreds of thousands of years, and in present time. It is shown that to understand the functioning of the climate system, it is necessary to take into account the geological factor – changes in the state of terrestrial and subsea permafrost: the huge reservoirs of ancient carbon, which is included in biogeochemical cycles due to permafrost degradation in warm geological epochs. This leads to imbalance in the carbon cycling, which manifests itself in massive emissions of CO2 and CH4 into the atmosphere. During cold geological epochs, carbon accumulates in permafrost, which stores amounts of carbon exceeding the carbon exchange between atmosphere, biosphere, land and ocean. Considering the Arctic region as the key climate “kitchen” we state that present time is characterized by unique long-lasting warming after the Holocene optimum, which occurred in the northern hemisphere approximately 5–6 thousand years ago. It contradicts with the Milankovich’ 105-kyrs cycling: after the Holocene optimum, the geological ice-epoch should have occurred, which should have led to about 100-meters sea level lowering and the transformation of the shallow Arctic shelf into land. However, warming has continued and the level of the World Ocean continues to rise, which has already led to an extended high sea level on the Arctic shelf – unique in geological history. This caused the lasting contact of relatively warm bottom waters (~(–1) °C) and frozen sediments (~(–25) °C) of the Arctic shelf for 5–6 thousand years longer than in previous warm geological epochs, which led to the progressive degradation of subsea permafrost, formation of deep or through taliks (zones of melted permafrost) and destabilization of Arctic shallow hydrates. It is shown that the increasing runoff of Siberian rivers, mobilization, transport, and transformation of terrestrial organic matter in the Arctic land–shelf system determines the sedimentation and biogeochemistry of the East Siberian Arctic Shelf – the broadest and shallowest shelf in the World Ocean, which makes up more than 70% of the Northern Sea Route area. This review paper presents selected key results obtained by the authors and their colleagues over the past 30 years, and identifies a number of problems facing modern climatology.
Keywords
цикл углерода парниковые газы мерзлота климат
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Barnola J. M., Raynaud D., Korotkevich Ye. S., Lorius C. Vostok ice core provides 160,000 year record of atmospheric CO 2 // Nature. 1987. Vol. 329. Р. 408–414.
  2. 2. Chappellaz J., Barnola J. M., Raynaud D., Korotkevich Ye. S., Lorius C. Ice core record of atmospheric methane over the past 160,000 years // Nature. 1990. Vol. 345. Р. 127–131.
  3. 3. Jouzel J., Lorius C., Petit J. R., Genthon C., Barkov N. I., Kotlyakov V. M., Petrov V. M. Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000) // Nature. 1987. Vol. 329, N6138. P. 403–408.
  4. 4. Jouzel J., Barkov N. I., Barnola J. M., Bender M., Chappelaz J., Genthon G., Kotlyakov V. M., Lipenkov V., Lorius C., Petit J. R., Raynaud D., Raisbeck G., Ritz C., Sowers T., Stivenard M., Yiou F., Yiou P. Extending the Vostok ice-core record of paleoclimate to the penultimate glacial period // Nature. 1993. Vol. 364. P. 407–412.
  5. 5. Lorius C., Barkov N. I., Jouzel J., Korotkevich Ye. S., Kotlyakov V. M., Raynaud D. Antarctic Ice Core: CO 2 and climatic change over the last climatic cycle // EOS. 1988. Vol. 69, N26. P. 681–684.
  6. 6. Lorius C., Jouzel J., Raynaud D., Hansen J., Letreut H. The ice-core record: climate sensitivity and future greenhouse warming // Nature. 1990. Vol. 347. P. 139–145.
  7. 7. Serreze M. C., Francis J. The Arctic amplification debate // Climatic Change. 2006. Vol. 76 (3/4). P. 241–264. DOI: 10.10007/s10584-005-9017.
  8. 8. ACIA (Arctic Climate Impact Assessment): Overview report. Cambridge Univ. Press, 2004. 140 p.
  9. 9. IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2001. 881 p.
  10. 10. Будыко М. И. Климат в прошлом и будущем. Л.: Гидрометеоиздат, 1980. 351 с.
  11. 11. Имбри Дж., Имбри К. П. Тайны ледниковых эпох. М.: Прогресс, 1988. 263 c.
  12. 12. Вернадский В. И. Химическое строение биосферы Земли и ее окружения. М.: Наука, 1965. 373 с.
  13. 13. Lewis S. L., Maslin M. A. Defining the Anthropocene // Nature. 2015. Vol. 519. P. 171–180.
  14. 14. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change / eds. H. Lee, J. Romero; Core Writing Team; IPCC. Geneva, Switzerland, 2023. P. 35–115. DOI: 10.59327/IPCC/AR6-9789291691647.
  15. 15. Tarnocai C., Canadell J. G., Schuur E. A. G., Kuhry P., Mazhitova G., Zimov S. Soil organic carbon pools in the northern circumpolar permafrost region // Global Biogeochemical Сycles. 2009. Vol. 23. GB2023. DOI: 10.1029/2008GBO03327.
  16. 16. Semiletov I. P., Shakhova N. E., Sergienko V. I., Pipko I. I., Dudarev O. On Carbon Transport and Fate in the East Siberian Arctic Land-Shelf-Atmosphere System // Environment Research Letters. 2012. N7. DOI: 10.1088/1748-9326/7/1/015201.
  17. 17. Shakhova N., Semiletov I., Chuvilin E. Understanding the Permafrost–Hydrate System and Associated Methane Releases in the East Siberian Arctic Shelf // Geosciences. 2019. Vol. 9 (6).
  18. 18. Криотермия и натуральные газгидраты в Северном Ледовитом океане / под ред. В. А. Соловьева. Л.: Севморгеология, 1987. 150 c.
  19. 19. Gramberg I. S., Kulakov Yu. N., Pogrebitsky Yu. E., Sorokov D. S. Arctic oil and gas super basin // X World Petroleum Congress. London, 1983. P. 93–99.
  20. 20. Shakhova N., Semiletov I., Leifer I., Salyuk A., Rekant P., Kosmach D. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf // Journal of Geophysical Research: Oceans. 2010. Vol. 115 (C8).
  21. 21. Shakhova N. E., Semiletov I. P. Methane Hydrate Feedbacks // Arctic Climate Feedbacks: Global Implications / eds. Martin Sommerkorn, Susan Joy Hassol. Published by WWF International Arctic Programme August, 2009. P. 81–92. ISBN: 978-2-88085-305-1.
  22. 22. Заварзин Г. А., Кларк У. Биосфера и климат: взгляд биолога // Природа. 1987. № 6. С. 65–77.
  23. 23. Canadell J. G., Raupach M. R. Land Carbon Cycle Feedbacks // Arctic Climate Feedbacks: Global Implications / eds. Martin Sommerkorn, Susan Joy Hassol. Published by WWF International Arctic Programme August, 2009. P. 69–80. ISBN: 978-2-88085-305-1.
  24. 24. Genthon C., Barnola J. M., Raynaud D., Lorius C., Jouzel J., Barkov N. I., Korotkevich Ye. S., Kotlyakov V. M. Vostok ice core : climatic response to CO 2 and orbital forcing changes over the last clymatic cycle // Nature. 1987. Vol. 329, N6138. P. 414–418.
  25. 25. Petit J., Jouzel J., Raynaud D. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica // Nature. 1999. Vol. 399. P. 429–436. DOI:10.1038/20859.
  26. 26. Rigby M., Prinn R. G., Fraser P. J. et al. Renewed growth of atmospheric methane // Geophys. Res. Lett. 2008. Vol. 35. L22805. DOI: 10.1029/2008GL036037.
  27. 27. Semiletov I. P., Zimov S. A., Voropaev Yu. V., Davydov S. P., Barkov N. I., Gusev A. N., Lipenkov V. Ya. Atmospheric methane in past and present // Trans. (Doklady) Russian Acad. Sci. 1994. Vol. 339, N2. P. 253–256 .
  28. 28. Semiletov I. P., Pipko I. I., Pivovarov N. Ya., Popov V. V., Zimov S. A., Voropaev Yu. V., Daviodov S. P. Atmospheric carbon emission from North Asian Lakes: a factor of global significance //Atmospheric Environment. 1996. Vol. 30, N10/11. P. 1657–1671.
  29. 29. Semiletov I. P. On aquatic sources and sinks of CO 2 and CH 4 in the Polar Regions // J. Atmos. Sci. 1999. Vol. 56. P. 286–306.
  30. 30. Zimov S. A., Voropaev Yu. V., Semiletov I. P. et al. North Siberian Lakes: a methane source fueled by Pleistocene carbon // Science. 1997. Vol. 277. P. 800–802.
  31. 31. Shakhova N., Semiletov I., Salyuk A., Yusupov V., Kosmach D., Gustafsson Ö. Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf // Science. 2010. Vol. 327 (5970). P. 1246–1250.
  32. 32. Shakhova N. E., Alekseev V. A., Semiletov I. P. Predicted methane emission on the East Siberian shelf // Doklady Earth Sciences. 2010. Vol. 430 (2). 190–193.
  33. 33. Seneviratne S. I., Nicholls N., Easterling D. et al. Changes in climate extremes and their impacts on the natural physical environment // Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC) / eds. C. B. Field, V. Barros, T. F. Stocker et al. Cambridge, UK; New York, NY, USA: Cambridge University Press, 2012. P. 109–230.
  34. 34. Dutton A., Carlson A. E., Long A. J., Milne G. A., Clark P. U., DeConto R., Horton B. P., Rahmstorf S., Raymo M. E. Sea-level rise due to polar ice-sheet mass loss during past warm periods // Science. 2015. Vol. 349. aaa4019. DOI: 10.1126/science.aaa4019.
  35. 35. Solomon S., Plattner G.-K., Knutti R., Friedlingstein P. Irreversible climate change due to carbon dioxide emissions // PNAS. 2009. Vol. 106 (6). P. 1704–1709.
  36. 36. Semiletov I. P. Ancient Ice Air Content of the Vostok Ice Core // Biogeochemistry of Trace Gases / ed. S. Oremland. New York: Chapman and Hall Inc., 1993. P. 46–59.
  37. 37. Семилетов И. П. Углеродный цикл и глобальные изменения в прошлом и настоящем // Химия морей и океанов / ред. О. К. Бордовский. М.: Наука, 1995. С. 130–154.
  38. 38. Kennett J. P., Cannariato K. G., Hendy I. L., Behl R. J. Methane hydrates in Quaternary Climate Change. Washington, D.C.: AGU, 2003. 317 p.
  39. 39. Kvenvolden K. A. Gas hydrates: Geological perspective and global change // Rev. Geophys. 1993. Vol. 31. P. 173–187.
  40. 40. Голицын Г. С., Гинзбург А. С. Оценка возможности быстрого метанового потепления 55 млн лет назад // Доклады Академии наук. 2007. T. 413 (6).
  41. 41. Chappellaz J., Blunier T., Raynaud D., Barnola J. M., Schwander J., Stauffer B. Synhronous changes in atmospheric CH 4 and Greenland climate between 40 and 8 kyr BP // Nature. 1993. Vol. 336. Р. 443–445.
  42. 42. Etheridge D. M., Steele L. P., Francey R. J., Langenfelds R. L. Atmospheric methane between 1000 A. D. and present: Evidence of anthropogenic emissions and climatic variability // Journal of Geophysical Research: Atmospheres. 1998. Vol. 103 (D13). P. 15979–15993.
  43. 43. Sapart C. J., Monteil G., Prokopiou M., van de Wal R. S. W., Kaplan J. O., Sperlich P. et al. Natural and anthropogenic variations in methane sources during the past two millennia // Nature. 2012. Vol. 490 (7418). P. 85–89.
  44. 44. Rasmussen R. A., Khalil M. A. K. Atmospheric methane in the recent and ancient atmospheres: concentrations, trends and interhemispheric gradient // J .Geoph. Res. 1984. Vol. 89, N D7. P. 11599–11605.
  45. 45. Chappellaz J. et al. Changes in atmospheric CH4 gradient between Greenland and Antarctica during Holocene // J. Geophys. Res. 1997. Vol. 102 (D13). P. 15987–15997 .
  46. 46. Dallenbach A., Blunier T., Fluckiger J., Stauffer B. Changes in the atmospheric CH 4 gradient between Greenland and Antactica during the Last Glacial and the transition to the Holocene // Geophys. Res. Lett. 2000. Vol. 27 (7). P. 1005–1008.
  47. 47. Cuffey K. M., Clow G. D., Alley R. B., Stuiver M., Waddington E. D., Saltus R. W. Large Arctic Temperature Change at the Wisconsin-Holocene Glacial Transition // Science. 1995. Vol. 270. P. 455–458.
  48. 48. Романовский Н. Н., Гаврилов А. В., Тумской В. Е. Озерный термокарст и его роль в формировании прибрежной зоны шельфа моря Лаптевых // Криосфера Земли. 1999. Т. 3, № 3. С. 79–91.
  49. 49. Romanovskii N. N., Hubberten H. W., Gavrilov A. V., Eliseeva A. A., Tipenko G. S. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas // Geo-Marine Letters. 2005. Vol. 25 (2). P. 167–182.
  50. 50. Feely R. A., Sabine C. L., Takahashi T., Wanninkhof R. Uptake and Storage of Carbon Dioxide in the Ocean: the Global CO 2 Survey // Oceanography. 2001. Vol. 14, N4. P. 18–32.
  51. 51. Takahashi T., Sutherland S. C., Sweeney C., Poisson A., Metzl N., Tillbrook B., Bates N., Wanninkhof R., Feely R. A., Sabine C., Olafsson J., Nojiri Y. Global sea-air CO 2 flux based on climatological surface ocean pCO 2 , and seasonal biological and temperature effects // Deep-Sea Res. 2002. Vol. 2, N49. P. 1601–1622.
  52. 52. Shakhova N., Semiletov I., Panteleev G. The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle // Geophysical Research Letters. 2005. Vol. 32 (9).
  53. 53. Shakhova N., Semiletov I., Leifer I., Sergienko V., Salyuk A., Kosmach D. et al. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf // Nature Geoscience. 2014. Vol. 7 (1). P. 64–70.
  54. 54. Wild B., Shakhova N., Dudarev O., Semiletov I. et al. Organic matter composition and greenhouse gas production of thawing subsea permafrost in the Laptev Sea // Nature Communications. 2022. Vol. 13. P. 50–57. DOI:10.1038/s41467-022-32696-0.
  55. 55. Sapart C. J., Shakhova N., Semiletov I., Jansen J., Szidat S., Kosmach D., Dudarev O., van der Veen C., Egger M., Sergienko V., Salyuk A.,Tumskoy V., Tison J. L., Rockmann T. The origin of methane in the East Siberian Arctic Shelf unraveled with triple isotope analysis // Biogeosciences. 2017. Vol. 14, N9. P. 2283–2292.
  56. 56. Shakhova N., Semiletov I., Sergienko V., Lobkovsky L., Yusupov V., Salyuk A. et al. The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2015. Vol. 373 (2052). 20140451.
  57. 57. Shakhova N., Semiletov I., Gustafsson O., Sergienko V., Lobkovsky L., Dudarev O. et al. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf // Nature Communications. 2017. Vol. 8 (1). 15872.
  58. 58. Романкевич Е. А. Геохимия органического вещества в океане. М.: Наука, 1977. 256 с.
  59. 59. Романкевич Е. А., Ветров А. А. Цикл углерода в арктических морях России. М.: Наука, 2001. 302 с.
  60. 60. Романкевич Е. А., Ветров А. А. Углерод в Мировом океане. М.: ГЕОС, 2021. 352 c. ISBN: 978-5-89118-835-8. DOI: 10.34756/GEOS.2021.16.37857.
  61. 61. Арктика на пороге третьего тысячелетия / под ред. И. С. Грамберга и др. СПб.: Наука, 2000. 247 с.
  62. 62. The organic carbon cycle in the Аrctic ocean / eds. R. Stein, R. W. Macdonald. Berlin; Heidelberg; New York: Springer-Verlag, 2003. 363 p.
  63. 63. Бордовский О. К., Семилетов И. П. Обмен углеродом между придонной водой и донными осадками Охотского моря // Доклады АН СССР. 1989. Т. 306, № 3. C. 697–700.
  64. 64. Pipko I., Semiletov I., Tishchenko P., Pugach S., Christensen J. Carbonate Chemistry dynamics in Bering Strait and the Chukchi Sea // Progress in Oceanography. 2002. Vol. 55. P. 77–94.
  65. 65. Pipko I. I., Pugach S. P., Semiletov I. P., Anderson L. G., Shakhova N. E., Gustafsson Ö., Repina I. A., Spivak E. A., Charkin A. N., Salyuk A. N., Shcherbakova K. P., Panova E. V., Dudarev O. V. The dynamics of the carbon dioxide system in the outer shelf and slope of the Eurasian Arctic Ocean // Ocean Sci. 2017. Vol. 13. P. 997–1016.
  66. 66. Пипко И., Семилетов И., Пугач С. О карбонатной системе вод Восточно-Сибирского моря // Доклады Академии наук. 2005. Т. 402, № 3. С. 398–401.
  67. 67. Semiletov I. P. Destruction of the coastal permafrost ground as an important factor in biogeochemistry of the Arctic Shelf waters // Trans. (Doklady) Russian Acad. Sci. 1999. Vol. 368. P. 679–682. (Translated into English).
  68. 68. Semiletov I. P., Makshtas A. P., Akasofu S., Andreas E. Atmospheric CO 2 balance: The role of Arctic sea ice // Geophysical Research Letters. 2004. Vol. 31, N5. L05121. DOI: 10.1029/2003GL017996.
  69. 69. Bates N. Marine Carbon CycleFeedbacks // Arctic Climate Feedbacks: Global Implications / eds. Martin Sommerkorn, Susan Joy Hassol. Published by WWF International Arctic Programme August, 2009. P. 55–68. ISBN: 978-2-88085-305-1.
  70. 70. Semiletov I., Dudarev О., Luchin V., Charkin A., Shin K., Tanaka N. The East-Siberian Sea as a transition zone between the Pacific origin water and local shelf water // Geophysical Research Letters. 2005. Vol. 32. L10614. DOI: 10.1029/2005GL022490.
  71. 71. Rusanov I. I., Savvichev A. S., Zasko D. N., Sigalevich P. A., Pipko I. I., Pugach S. P., Pimenov N. V., Semiletov I. P. Primary production and microbial heterotrophy in the Siberian arctic seas, Bering Strait, and Gulf of Anadyr, Bering Sea // Estuarine, Coastal and Shelf Science. 2024. Vol. 299. 108673.
  72. 72. Semiletov I., Pipko I. I., Repina I. A., Shakhova N. Carbonate dynamics and carbon dioxide fluxes across the atmosphere-ice-water interfaces in the Arctic Ocean Pacific sector of the Arctic // Journal of Marine Systems. 2007. Vol. 66. P. 204–226.
  73. 73. Semiletov I., Pipko I., Gustafsson Ö., Anderson L. G., Sergienko V., Pugach S., Dudarev O., Charkin A., Gukov A., Bröder L., Andersson A., Spivak E., Shakhova N. Extreme acidification in the East Siberian Arctic Shelf driven by a permafrost-released carbon translocation and seawater freshening // Nature Geoscience. 2016. Vol. 9. P. 361–365. DOI: 10.1038/NGEO2695.
  74. 74. Pugach S. P., Pipko I. I., Shakhova N. E., Shirshin E. A., Perminova I. V., Gustafsson Ö. et al. Dissolved organic matter and its optical characteristics in the Laptev and East Siberian seas: spatial distribution and interannual variability (2003–2011) // Ocean Sci. 2018. Vol. 14 (1). P. 87–103.
  75. 75. Macdonald R. W., Anderson L. G., Christensen J. P., Miller L. A., Semiletov I. P., Stein R., The Arctic Ocean: budgets and fluxes // Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis / eds. K.-K. Liu, L. Atkinson, R. Quinones, L. Talaue-McManus. Springer-Verlag, 2008. P. 291–303.
  76. 76. Semiletov I. P., Shakhova N. E., Pipko I. I., Pugach S. P., Charkin A. N., Dudarev O. V., Kosmach D. A., Nishino S. Space-time dynamics of carbon stocks and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay of the Laptev Sea // Biogeosciences. 2013. Vol. 10. P. 5977–5996. DOI: 10.5194/bg-10-5977-2013.
  77. 77. Belzil C., Roesler C. S., Christensen J. P., Shakhova N., Semiletov I. Fluorescence measured using the WETStar DOM fluorometer as a proxy for dissolved matter absorption // Estuarine Coastal and Shelf Science. 2006. Vol. 67. P. 41–449.
  78. 78. Kaltin S., Anderson L. G. Uptake of atmospheric carbon dioxide in Arctic shelf seas: evaluation of the relative importance of processes that influence pCO 2 in water transported over the Bering-Chukchi Sea shelf // Mar. Chem. 2005. Vol. 94. P. 67–79.
  79. 79. Gosink T. A., Pearson J. G., Kelley J. J. Gas movement through sea ice // Nature. 1976. Vol. 263. P. 41–42.
  80. 80. Kelley J. J., Gosink T. A. Gases in Sea Ice. Final Report: Contract N000 14-76C-0331, Institute of Marine Science, University of Alaska. Fairbanks, Alaska, 1979. 107 p.
  81. 81. Semiletov I. P. On seasonal variability of hydrocarbon gases and dissolved oxygen in the Uglovoe Bay, the Japan Sea // Proc. Far-Eastern Hydrometeorological Institute. 1987. Vol. 131. P. 80–84. (In Russ.).
  82. 82. Alling V., Sanchez-Garcia L., Porcelli D., Pugach S., Vonk J., van Dongen B., Mörth C. M., Anderson L. G., Sokolov A., Andersson P., Humborg C., Semiletov I., Gustafsson Ö. Non-conservative behavior of dissolved organic carbon across the Laptev and East Siberian seas // Global Biogeochemical Cycles. 2010. Vol. 24. GB4033.
  83. 83. Vonk J. E., Sánchez-García L., van Dongen B. E., Alling V., Kosmach D., Charkin A., Semiletov I. P., Dudarev O. V., Shakhova N., Roos P., Eglinton T. I., Andersson A., Gustafsson Ö. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia // Nature. 2012. Vol. 489 (7414). P. 137–140.
  84. 84. Semiletov I. P., Pipko I. I., Shakhova N. E., Dudarev O. V., Pugach S. P., Charkin A. N., McRoy C.P., Kosmach D., Gustafsson Ö. Carbon transport by the Lena River from its headwaters to the Arctic Ocean, with emphasis on fluvial input of terrestrial particulate organic carbon vs. carbon transport by coastal erosion // Biogeosciences. 2011. Vol. 8. P. 2407–2426.
  85. 85. Guo L., Semiletov I., Gustafsson O., Ingri J., Anderson P., Dudarev O., White D. Characterization of Siberian Arctic coastal sediments: Implications for terrestrial carbon export // Global Biogeochemical Cycles. 2004. Vol. 18. GB1036. DOI: 10 1029/2003 GBO 02087.
  86. 86. Vetrov A. A., Semiletov I. P., Dudarev O. V., Peresipkin V. I., Charkin A. N. Study of composition and origin oforganic matter in the East-Siberian Sea bottom sediments // Geokhimiya (Geochemistry). 2008. Vol. 3. P. 183–195. (Translated in English).
  87. 87. Pipko I. I., Semiletov I. P., Tischenko P. Ya., Pugach S. P., Savelieva N. I. Carbon System Parameters Variability in the East-Siberian Sea Coastal-Shelf Zone during Fall Season // Okeanologiya (Oceanology). 2008. Vol. 48 (1). P. 59–72. (Translated in English).
  88. 88. Pipko I. I., Semiletov I. P., Pugach S. P., Wáhlström I., Anderson L. G. Interannual variability of air-sea CO 2 fluxes and carbon system in the East Siberian Sea // Biogeosciences. 2011. Vol. 8. P. 1987–2007. DOI: 10.5194/bg-8-1987-2011.
  89. 89. Anderson L. G., Jutterström S., Hjalmarsson S., Wahlström I., Semiletov I. P. Out-gassing of CO 2 from Siberian Shelf seas by terrestrial organic matter decomposition // Geophysical Research Letters. 2009. Vol. 36. L20601. DOI: 10.1029/2009GL040046.
  90. 90. Semiletov I. P., Pipko I. I. Sinks and sources of carbon dioxide in the Arctic Ocean // Transactions of Russian Academy of Sciences. 2007. Vol. 414 (3). (Translated in English by Springer).
  91. 91. Shakhova N., Semiletov I. Methane release and coastal environment in the East Siberian Arctic shelf // Journal of Marine Systems. 2007. Vol.66 (1/4). P. 227–243.
  92. 92. Savvichev A. S., Rusanov I. I., Pimenov N. V., Zakharova E. E., Veslopolova E. F., Lein A. Y., Crane K., Ivanov M. V. Microbial processes of the carbon and sulfur cycles in the Chukchi Sea // Microbiology. 2007. Vol. 76. P. 603–613. DOI: 10.1134/S0026261707050141.
  93. 93. Namsaraev B. B., Rusanov I. I., Mitskevich I. N., Veslopolova E. F., Bolshakov A. M., Egorov A. V. Bacterial methane oxidation rates in waters and sediments of the Kara Sea and the Yenisey River estuary. Supplement to: Namsaraev B. B. et al. Bacterial oxidation of methane in the Yenisey River estuary and the Kara Sea // Oceanology. 1995. Vol. 35 (1). P. 80–85.
  94. 94. Are F. E. The problem of the emission of deep-buried gases to the atmosphere // Permafrost Response on Economic Development, Environmental Security and Natural Resources / eds. R. Paepe., V. P. Melnikov, E. van Overloop, V. D. Gorokhov. Dordrecht, Netherlands: Springer, 2001. P. 497–509.
  95. 95. Зубов Н. Н. Морские воды и льды. Л.: Гидрометеоиздат, 1938. 454 с.
  96. 96. Reeburg W. S. Oceanic methane biogeochemistry // Chem. Rev. 2007. Vol. 107. P. 486–513.
  97. 97. Shakhova N. E., Nicolsky D., Semiletov I. P. On the current state of sub-sea permafrost in the East-Siberian Shelftesting of modeling results by observational data // Transactions of Russian Academy of Sciences. 2009. Vol. 429 (5). (Translated in English by Springer).
  98. 98. Shakhova N. E., Semiletov I. P. Characteristical features ofcarbon cycle in the shallow shelf of the eastern sector of Russian Arctic // Environmental and Climate Changes and catastrophes / eds. N. P. Laverov et al. Moscow: A. M. Obukhov Institute of Atmospheric Physics Russian Academy of Sciences, 2008. Vol. 4. P. 167–181.
  99. 99. Steinbach J., Holmstrand H., Scherbakova K., Kosmach D., Bruchr V., Shakhova N., Salyuk A., Sapart C., Chernikh D., Noormets R., Semiletov I., Gustafsson O. Source Apportionment of Methane Escaping the Subsea Permafrost System in the Outer Eurasian Arctic Shelf // Proceedings National Academy of Sciences (PNAS). 2021. Vol. 118 (10). e2019672118. DOI: 10.1073/pnas.2019672118.
  100. 100. Savelieva N. I., Semiletov I. P., Vasilevskaya L. N., Pugach S. P. A climate shift in seasonal values of meteorological and hydrological parameters for Northeastern Asia // Progress in Oceanography. 2000. Vol. 47 (2/4). P. 279–297.
  101. 101. Semiletov I. P., Savelieva N. I., Weller G. E., Pipko I. I., Pugach S. P., Gukov A. Yu., Vasilevskaya L. N. The Dispersion of Siberian River Flows into Coastal Waters: Meteorological, Hydrological and Hydrochemical Aspects // The Freshwater Budget of the Arctic Ocean, NATO Meeting / ed. E. L. Lewis; NATO ASI Series. Dordrecht: Kluwer Academic Publishers, 2000. P. 323–367.
  102. 102. Smith L. C., Sheng Y., MacDonald G.M., Hinzman L. D. Disappearing Arctic Lakes // Science. 2005. Vol. 308 (5727). 1429.
  103. 103. Zimov S. A., Semiletov I. P., Daviodov S. P., Voropaev Yu. V., Prosyannikov S. F., Wong C. S., Chan Y.-H. Wintertime CO 2 emission from soils of Northeastern Siberia // Arctic. 1993. Vol. 46. P. 197–204.
  104. 104. Makogon Y. F., Holditch S. A., Makogon T. Y. Natural gas-hydrates – A potential energy source for the 21st Century // Journal of Petroleum Science and Engineering. 2007. Vol. 56 (1). P. 14–31.
  105. 105. Shakhova N. E., Sergienko V. I., Semiletov I. P. Modern state of the role ofthe East Siberian Shelf in the methane cycle // Herald of the Russian Academy of Sciences. 2009. Vol. 79, N6. P. 507–518.
  106. 106. Imaev V. S., Imaeva L. P., Koz’min B. M. Seismotectonics of Yakutia. Moscow: GEOS, 2000. (In Russ.).
  107. 107. Hope C., Schaefer K. Economic impacts of carbon dioxide and methane released from thawing permafrost // Nature Climate Change. 2016. Vol. 6. P. 56–59. DOI: 10.1038/nclimate2807.
  108. 108. Whitman G., Hope C., Wadhams P. Climate science: Vast costs of Arctic change // Nature. 2013. Vol. 449. P. 401–403.
  109. 109. Natali S. M., Holdren J. P., Rogers B. M., Treharne R., Duffy P. B., Pomerance R. et al. Permafrost carbon feedbacks threaten global climate goals // Proceedings of the National Academy of Sciences. 2021. Vol. 118 (21). e2100163118.
  110. 110. Barnard P. E., Moomaw W. R., Fioramonti L., Laurance W. F., Mahmoud M. I., O’Sullivan J., Rapley C. G., Rees W. E., Rhodes C. J., Ripple W. J., Semiletov I. P., Talberth J., Tucker C., Wysham D., Ziervogel G. World Scientists’ Warnings Into Action, Local to Global // Science Progress. 2021. Vol. 104, N4. P. 1–32.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library