RAS PresidiumВестник Дальневосточного отделения Российской академии наук Vestnik of the Far East Branch of the Russian Academy of Sciences

  • ISSN (Print) 0869-7698
  • ISSN (Online) 3034-5308

Structural chemistry of mixed-ligand carboxylate-fluoride and neutral fluoride complexes of uranyl (review)

PII
10.31857/S0869769824020151-1
DOI
10.31857/S0869769824020151
Publication type
Review
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
170-186
Abstract
The crystal structures of mixed-ligand carboxylate-fluoride and neutral fluoride complexes of uranyl studied by the single-crystal X-ray diffraction method have been systematized and discussed. The crystal chemical features of the structures of this class of uranyl compounds were determined: the coordination polyhedron of the hexavalent uranium atom in the structures of the mixed-ligand carboxylate-fluoride and neutral fluoride complexes of uranyl (excluding three hexadentate-bipyramidal compound) has a pentagonal-bipyramidal structure: the oxygen atoms of the uranyl group are located on the vertical axis of the pentagonal bipyramid, perpendicular to the equatorial plane in which five atoms are located. In the crystal structures of dimeric and polymeric mixed-ligand carboxylate-fluoride and neutral fluoride complexes of uranyl (with the exception of one compound in which the bridging bonds in the dimer are formed by oxygen atoms) the fluoride bridges form fluoride atoms.
Keywords
уранил фторид разнолигандный петагональная бипирамида структура карбоксилаты нейтральные лиганды
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Давидович Р. Л. Структурная химия разнолигандных неорганических фторидных комплексных соединений уранила (обзор) // Вестн. ДВО РАН. 2024. № 1. С. 92–112.
  2. 2. Kim J.-Y., Norquist A. J., O’Hare D. Variable dimensionality in the UO2(CH3CO2)2·2H2O/HF/isonicotinic acid system: Synthesis and structures of zero-, one-, and two-dimensional uranium isonicotinates // Chem. Mater. 2003. Vol. 15. P. 1970–1975. https://doi.org/10.1021/cm021722n.
  3. 3. Andreev G., Budantseva N., Fedoseev A. Interaction with simple monopyridinecarboxylic ligands revealing unexpected structural types of uranyl halides // Inorg. Chem. 2020. Vol. 59. P. 15583–15586. DOI: 10.1021/acs.inorgchem.0c02718.
  4. 4. Davidovich R. L., Goreshnik E. A. Structural chemistry of fluoride complexes of uranyl // Struct. Chem. 2023. Vol. 34, N1. P. 265–284. https://doi.org/10.1007/s11224–022–02095–8.
  5. 5. Сережкин В. Н., Григорьев М. С., Сукачева М. В., Сережкина Л. Б. Новые фторосукцинато- и фтороглутаратоуранилаты бария // Журн. физ. химии. 2023. Т. 97, № 4. С. 535–542. DOI: 10.31857/S0044453723040283.
  6. 6. Kim J.-Y., Norquist A. J., O’Hare D. Incorporation of uranium(VI) into metal–organic framework solids, [UO2(C4H4O4)]·H2O, [UO2F(C5H6O4)]·2H2O, and [(UO2)1.5(C8H4O4)2]2[(CH3)2NCOH2]·H2O // Dalton Trans. 2003. N14. P. 2813–2814. https://doi.org/10.1039/B306733P.
  7. 7. Zhang Y.-J., Tilley G. J., Martin L. R., Livens C. D., Helliwell M., Abdul Malik K. M., Hursthouse M. B. Controlling solid state structure of uranyl(VI) complexes: Monomeric complexes with malonate and malonamate // J. Nucl. Sci. Tech. 2002. Vol. 39, suppl. 3. P. 457–460. DOI: 10.1080/00223131.2002.10875506.
  8. 8. Farkas I., Csöregh I., Szabó Z. Crystal Structure of the Sodium Salt of the Uranyl-Oxyacetate-Fluoride Dimer, Na4(UO2)2(OCH2COO)2F4·6H2O // Acta Chem. Scand. 1999. Vol. 53. P. 1009–1012. DOI: 10.3891/acta.chem.scand.53–1009.
  9. 9. Nguyen Quy Dao, Bkouche-Waksman I., Walewski M., Caceres D. Etude cristallographique et structurale des complexes oxalato-fluorure d′uranyle alcalins de formules M3UO2F3(C2O4)-nH2O et M3UO2F(C2O4)2-n′H2O // Bull. Soc. Chim. Fr. 1984. N3–4. P. I.129–I.132.
  10. 10. Kerr A. T., Kumalah S. A., Holman K. T., Butcher R. J., Cahill C. L. Uranyl coordination polymers incorporating η5-cyclopentadienyliron-functionalized η6-phthalate metalloligands: Syntheses, structures and photophysical properties // J. Inorg. Organomet. Polym. 2014. Vol. 24. P. 128–136. DOI: 10.1007/s10904–013–9980–0.
  11. 11. Hou X., Tang S.-F. Two new two-dimensional layered uranyl-bearing polycarboxylates from semi-rigid tetracarboxylic acids // RSC Adv. 2014. Vol. 4. P. 34716–34720. DOI: 10.1039/c4ra04684f.
  12. 12. Aas W., Johanson M. H. Structure of the sodium salt of the ternary uranyl-picolinate-fluoride complex [UO2(picolinate)F3] Na2(H2O)4 // Acta Chem. Scand. 1999. Vol. 53. P. 581–583. DOI: 10.3891/acta. chem. scand. 53–0581.
  13. 13. Silverwood P. R., Collison D., Livens F. R., Beddoes R. L., Taylor R. J. Uranyl monopicolinate complexes // J. Alloys Comp. 1998. Vol. 271–273. P. 180–183. https://doi.org/10.1016/S0925-8388 (98)00050-4.
  14. 14. Щелоков Р. Н., Орлова И. М., Сергеев А. В., Михайлов Ю. Н., Лобанова Г. М., Канищева А. С. Смешанные соединения уранила с мостиковой этилендиаминтетраацетатогруппой // Коорд. химия. 1985. Т. 11, № 2. С. 196–206.
  15. 15. John G. H., May I., Collison D., Helliwell M. Synthesis, structural and spectroscopic characterisation of three di-μ-fluoro-bis[dioxouranyl] complexes // Polyhedron. 2004. Vol. 23. P. 3097–3103. https://doi.org/10.1016/j.poly.2004.09.010.
  16. 16. Kannan S., Moody M. A., Barnes C. L., Duval P. B. Fluoride abstraction and reversible photochemical reduction of cationic uranyl(VI) phosphine oxide complexes // Inorg. Chem. 2006. Vol. 45. P. 9206–9212. https://doi.org/10.1021/ic060742e.
  17. 17. Михайлов Ю. Н., Иванов С. Б., Орлова И. М., Поднебесная Г. В., Кузнецов В. Г., Щелоков Р. Н. Синтез и кристаллическая структура тетракарбамидотетрафтородиуранила [UO2F2{OC(NH2)2}2]2 // Коорд. химия. 1976. Т. 2, № 11. С. 1570–1573.
  18. 18. Dewan J. C., Edwards A. J., Slim D. R., Guerchais J. E., Kergoat R. Fluoride Crystal Structures. Part XXIII. catena-Di-μ-fluoro-(dimethyl sulphoxide) dioxouranium (VI) // J. Chem. Soc. Dalton Trans. 1975. Iss. 21. P. 2171– 2174.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library