RAS PresidiumВестник Дальневосточного отделения Российской академии наук Vestnik of the Far East Branch of the Russian Academy of Sciences

  • ISSN (Print) 0869-7698
  • ISSN (Online) 3034-5308

Deformation method of tsunami prediction

PII
10.31857/S0869769824020013-1
DOI
10.31857/S0869769824020013
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
5-16
Abstract
Based on the analysis of numerous data on variations of deformations of the Earth’s crust obtained using a laser strainmeter, deformation anomalies (deformation jumps) that occur during tsunami generation have been detected. The deformation jumps recorded by the laser strainmeter are caused by bottom movements leading to the formation of a tsunami. According to the data of many registered tsunamigenic earthquakes, the attenuation coefficients of the identified deformation anomalies for four regions of the planet have been calculated.
Keywords
землетрясение цунами лазерный деформограф скачок деформации
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Stein S., Okal E. A. Speed and size of the Sumatra earthquake // Nature. 2005. Vol. 434. N7033. P. 581–582.
  2. 2. Wei Y., Newman A. V., Hayes G. P., Titov V. V., Tang L. Tsunami forecast by joint inversion of real-time tsunami waveforms and seismic or GPS Data: Application to the Tohoku 2011 tsunami // Pure Appl. Geophys. 2014. Vol. 171. P. 3281–3305. https://doi.org/10.1007/s00024–014–0777-z.
  3. 3. Pacific Tsunami Warning Center/International Tsunami Information Center (PTWC/ITIC). User’s guide for the Pacific Tsunami Warning Center enhanced products for the Pacific tsunami warning system. Revised Edition. Paris, France: UNESCO/IOC, 2014. Vol. 105. (IOC Technical Series).
  4. 4. Perez del Postigo Prieto N., Raby A., Whittaker C., Boulton S. J. Parametric Study of Tsunamis Generated by Earthquakes and Landslides // J. Mar. Sci. Eng. 2019. Vol. 7 (5). P. 154.
  5. 5. Долгих Г. И., Долгих С. Г., Ковалев С. Н., Корень И. А., Овчаренко В. В., Чупин В. А., Швец В. А., Яковенко С. В. Регистрация деформационной аномалии цунамигенного землетрясения лазерным деформографом // Докл. АН. 2007. Т. 412, № 1. С. 104–106.
  6. 6. Долгих Г. И., Долгих С. Г., Ковалев С. Н., Овчаренко В. В., Чупин В. А., Швец В. А., Яковенко С. В. Деформационный метод определения цунамигенности землетрясений // Докл. АH. 2007. Т. 417, № 1. С. 109–112.
  7. 7. Долгих Г. И. Принципы построения однокоординатных лазерных деформографов // Письма в ЖТФ. 2011. Т. 37, вып. 5. С. 24–30.
  8. 8. Hashimoto M., Savage M., Nishimura T., Horikawa H., Tsutsumi H. 2016 Kumamoto earthquake sequence and its impact on earthquake science and hazard assessment // Earth, Planets and Space. 2017. Vol. 69. P. 98. DOI: 10.1186/s40623–017–0682–7.
  9. 9. Ji C., Wald D. J., Helmberger D. V. Source description of the 1999 Hector Mine, California earthquake. Part I: Wavelet domain inversion theory and resolution analysis // Bull. Seism. Soc. Am. 2002. Vol. 92, N4. P. 1192–1207.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library