- PII
- 10.31857/S0869769824010087-1
- DOI
- 10.31857/S0869769824010087
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 1
- Pages
- 113-125
- Abstract
- The CoF2/C/CF/PTFE nanocomposite was synthesized in the plasma of a pulsed high-voltage discharge. CoF2 nanoparticles are distributed in two size ranges ~20–100 nm and ~3–10 nm. After calcining the composite, the nanodispersed powder was obtained consisting of Co3O4 nanoparticles with the same particle size distribution. SQUID magnetometry was used to study the temperature and field dependences of the magnetization of the samples in the range of 300–2 K. On the graphs of temperature dependences, for both types of samples, at two different temperatures, peak-like changes occur, attributed to the transitions of CoF2 or Co3O4 nanoparticles, with decreasing temperature, in antiferromagnetic state. The transition temperature TN was estimated from the peak maxima. The existence of two transition temperatures is explained by size effects, taking into account the distribution of particle sizes in two different ranges. At temperatures below TN, a shift of the magnetic hysteresis loops to the region of negative fields was found, which is due to the AFM/FM interaction between the core and shell of nanoparticles. For both types of samples, there is a hysteresis in the temperature dependences of FC and ZFC. The manifestation of hysteresis can be explained in the general case by the presence of the metastable state formed in an external magnetic field during the interaction of the magnetic moments of nanoparticles, in this case, arising due to the uncompensated spins on their surface. It is concluded that the effect of particle size on the shift of the transition temperature to the AFM state is more significant in CoF2 nanoparticles than in Co3O4 nanoparticles.
- Keywords
- плазмохимия ПТФЭ наночастицы CoF2 Co3O4 намагниченность фазовые переходы
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 13
References
- 1. Kuryavyi V. G., Buznik V. M., Ustinov A. Yu., Sukhoverkhov S. A., Pavlov A. D., Slobodyuk A. B., Tkachenko I. A., Kvach A. A., Kaidalova T. A. Nanocomposite Synthesized in Plasma of Pulse High-Voltage Discharge Initiated between Copper Electrodes in the Presence of Fluoroplast // Inorg. Mater. Appl. Res. 2019. Vol. 10, N1. P. 184–194.
- 2. Kuryavyi V. G., Zverev G. A., Tkachenko I. A., Slobodyuk A. B., Gerasimenko A. V., Ustinov A. Yu., Bouznik V. M. Nanocomposite Obtained in the Plasma of a Pulsed High Voltage Discharge Using Nickel Electrodes and PTFE // Adv. Nano Res. 2021. Vol. 1, iss. 1. P. 10–26.
- 3. Opra D. P., Gnedenkov S. V., Sokolov A. A., Kuryavyi V. G., Ustinov A. Yu., Kaidalova T. A., Sinebryukhov S. L. Nanostructured composite FeOF–FeF3 as anode material for Li-ion battery: the original method of pulsed high-voltage discharge // Solid State Phenomena. 2016. Vol. 245. P. 109–115.
- 4. Курявый В. Г., Бузник В. М., Устинов А. Ю., Лукиянчук И. В., Павлов А. Д. Нанодисперсный Pt/C катализатор и наноразмерный ПТФЭ, полученные после обработки ПТФЭ Ф4 в плазме импульсного высоковольтного разряда // Вестн. ДВО РАН. 2016. № 6. С. 41–47.
- 5. Курявый В. Г., Павлов А. Д., Суховерхов С. В., Слободюк А. Б., Зверев Г. А., Бузник В. М. Преобразования фторопластового вещества при обработке фторопласта в плазме импульсного высоковольтного разряда и при последующем прокаливании // Вестн. ДВО РАН. 2022. № 6. С. 66–76.
- 6. Astrov D. N., Borovik-Romanov A.S., Orlova M. P. Magnetic properties of cobalt fluoride in the antiferromagnetic state // J. Exp. Theor. Phys. 1957. Vol. 33. P. 812–815.
- 7. Salah A. Makhlouf. Magnetic properties of Co3O4 nanoparticles // J. Magnetism and Magnetic Mater. 2002. Vol. 246. P. 184–190.
- 8. Roth W. L. The magnetic structure of Co3O4 // J. Phys. Chem. Solids. 1964. Vol. 25, iss. 1. P. 1–10.
- 9. Zhu H. T., Luo J., Liang J. K., Rao G. H., Li J. B., Zhang J. Y., Du Z. M. Synthesis and magnetic properties of antiferromagnetic Co3O4 nanoparticles // Physica B: Condensed Matter. 2008. Vol. 403, iss. 18. P. 3141–3145.
- 10. Benitez M. J., Petracic O., Tuysuz H., Schuth F., Zabel H. Decoupling of magnetic core and shell contributions in antiferromagnetic Co3O4 nanostructures // EPL. 2009. Vol. 88. 27004.
- 11. Vilakazi B. M. A thermogravimetric investigation into the synthesis of cobalt fluoride. Pretoria, 2018. 105 p.
- 12. Mitkin V. N. Types of inorganic fluorocarbon polymer materials and structure–property correlation problems // J. Struct. Chem. 2003. Vol. 44, N1. P. 82–115.
- 13. Бузник В. М., Фомин В. М., Алхимов А. П. и др. Металлополимерные композиты: получение, свойства, применение. Новосибирск: Изд-во СО РАН, 2005. 260 с.
- 14. Андреев М. Н., Ребров А. К., Сафонов А. И., Тимошенко Н. И. Исследование процессов осаждения тонких тефлоновых пленок газоструйным методом // Вестн. НГУ. Серия: Физика. 2007. Т. 2, вып. 4. С. 65–62.
- 15. Setton R., Bernier P., Lefrant S. Carbon molecules and materials. L.; N.Y.: Taylor and Francis, 2002. 489 p.
- 16. Ferrari A. C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects // Solid State Comm. 2007. Vol. 143, iss. 1/2. P. 47–57.
- 17. Tuinstra F., Koenig J. Raman spectrum of graphite // J. Chem. Phys. 1970. Vol. 53, N3. P. 1126–1130.
- 18. Meiklejohn W. H., Bean C. P. New magnetic anisotropy // Phys. Rev. 1956. Vol. 102. P. 1413–1414.
- 19. Tang C. W., Wang C. B., Chien S. H. Characterization of cobalt oxides studied by FT-IR // Raman, TPR and TG-MS. 2008. Vol. 473, iss. 1/2. P. 68–73.
- 20. Diallo A., Beye A. C., Doyle T. B., Park E., Maaza M. Green synthesis of Co3O4 nanoparticles via Aspalathus linearis: Physical properties // Green Chem. Lett. Rev. 2015. Vol. 8, N3/4. P. 30–36.